from abc import ABC, abstractmethod import datetime import time import signal import traceback import collections import numpy as np import cv2 import threading import matplotlib.pyplot as plt import hashlib import pyarrow.plasma as plasma def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'): if color is None: color = (0,0,255) display_text = "{}: {}".format(label, info) cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness) font_scale = 0.5 font = cv2.FONT_HERSHEY_SIMPLEX # get the width and height of the text box size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2) text_width = size[0][0] text_height = size[0][1] line_height = text_height + size[1] # set the text start position if position == 'ul': text_offset_x = x_min text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) elif position == 'ur': text_offset_x = x_max - (text_width+8) text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) elif position == 'bl': text_offset_x = x_min text_offset_y = y_max elif position == 'br': text_offset_x = x_max - (text_width+8) text_offset_y = y_max # make the coords of the box with a small padding of two pixels textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height)) cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED) cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2) def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2): # size is larger than longest edge size = int(max(xmax-xmin, ymax-ymin)*multiplier) # dont go any smaller than 300 if size < 300: size = 300 # if the size is too big to fit in the frame if size > min(frame_shape[0], frame_shape[1]): size = min(frame_shape[0], frame_shape[1]) # x_offset is midpoint of bounding box minus half the size x_offset = int((xmax-xmin)/2.0+xmin-size/2.0) # if outside the image if x_offset < 0: x_offset = 0 elif x_offset > (frame_shape[1]-size): x_offset = (frame_shape[1]-size) # y_offset is midpoint of bounding box minus half the size y_offset = int((ymax-ymin)/2.0+ymin-size/2.0) # if outside the image if y_offset < 0: y_offset = 0 elif y_offset > (frame_shape[0]-size): y_offset = (frame_shape[0]-size) return (x_offset, y_offset, x_offset+size, y_offset+size) def intersection(box_a, box_b): return ( max(box_a[0], box_b[0]), max(box_a[1], box_b[1]), min(box_a[2], box_b[2]), min(box_a[3], box_b[3]) ) def area(box): return (box[2]-box[0] + 1)*(box[3]-box[1] + 1) def intersection_over_union(box_a, box_b): # determine the (x, y)-coordinates of the intersection rectangle intersect = intersection(box_a, box_b) # compute the area of intersection rectangle inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1) if inter_area == 0: return 0.0 # compute the area of both the prediction and ground-truth # rectangles box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1) box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = inter_area / float(box_a_area + box_b_area - inter_area) # return the intersection over union value return iou def clipped(obj, frame_shape): # if the object is within 5 pixels of the region border, and the region is not on the edge # consider the object to be clipped box = obj[2] region = obj[4] if ((region[0] > 5 and box[0]-region[0] <= 5) or (region[1] > 5 and box[1]-region[1] <= 5) or (frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or (frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)): return True else: return False class EventsPerSecond: def __init__(self, max_events=1000): self._start = None self._max_events = max_events self._timestamps = [] def start(self): self._start = datetime.datetime.now().timestamp() def update(self): self._timestamps.append(datetime.datetime.now().timestamp()) # truncate the list when it goes 100 over the max_size if len(self._timestamps) > self._max_events+100: self._timestamps = self._timestamps[(1-self._max_events):] def eps(self, last_n_seconds=10): # compute the (approximate) events in the last n seconds now = datetime.datetime.now().timestamp() seconds = min(now-self._start, last_n_seconds) return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds def print_stack(sig, frame): traceback.print_stack(frame) def listen(): signal.signal(signal.SIGUSR1, print_stack) class FrameManager(ABC): @abstractmethod def get(self, name, timeout_ms=0): pass @abstractmethod def put(self, name, frame): pass @abstractmethod def delete(self, name): pass class DictFrameManager(FrameManager): def __init__(self): self.frames = {} def get(self, name, timeout_ms=0): return self.frames.get(name) def put(self, name, frame): self.frames[name] = frame def delete(self, name): del self.frames[name] class PlasmaFrameManager(FrameManager): def __init__(self, stop_event=None): self.stop_event = stop_event self.connect() def connect(self): while True: if self.stop_event != None and self.stop_event.is_set(): return try: self.plasma_client = plasma.connect("/tmp/plasma") return except: print(f"TrackedObjectProcessor: unable to connect plasma client") time.sleep(10) def get(self, name, timeout_ms=0): object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest()) while True: if self.stop_event != None and self.stop_event.is_set(): return try: frame = self.plasma_client.get(object_id, timeout_ms=timeout_ms) if frame is plasma.ObjectNotAvailable: return None return frame except: self.connect() time.sleep(1) def put(self, name, frame): object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest()) while True: if self.stop_event != None and self.stop_event.is_set(): return try: self.plasma_client.put(frame, object_id) return except Exception as e: print(f"Failed to put in plasma: {e}") self.connect() time.sleep(1) def delete(self, name): object_id = plasma.ObjectID(hashlib.sha1(str.encode(name)).digest()) while True: if self.stop_event != None and self.stop_event.is_set(): return try: self.plasma_client.delete([object_id]) return except: self.connect() time.sleep(1)