import logging import numpy as np import cv2 logger = logging.getLogger(__name__) def yolov8_preprocess(tensor_input, model_input_shape): # tensor_input must be nhwc assert tensor_input.shape[3] == 3 if tuple(tensor_input.shape[1:3]) != tuple(model_input_shape[2:4]): logger.warn(f"yolov8_preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!") # cv2.dnn.blobFromImage is faster than numpying it return cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False) def yolov8_postprocess(model_input_shape, tensor_output, box_count = 20, score_threshold = 0.3, nms_threshold = 0.5): model_box_count = tensor_output.shape[2] probs = tensor_output[0, 4:, :] all_ids = np.argmax(probs, axis=0) all_confidences = probs.T[np.arange(model_box_count), all_ids] all_boxes = tensor_output[0, 0:4, :].T mask = (all_confidences > score_threshold) class_ids = all_ids[mask] confidences = all_confidences[mask] cx, cy, w, h = all_boxes[mask].T if model_input_shape[3] == 3: scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2] else: scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3] detections = np.stack((class_ids, confidences, scale_y * (cy - h / 2), scale_x * (cx - w / 2), scale_y * (cy + h / 2), scale_x * (cx + w / 2)), axis=1) if detections.shape[0] > box_count: # if too many detections, do nms filtering to suppress overlapping boxes boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1) indexes = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold, nms_threshold) detections = detections[indexes] # if still too many, trim the rest by confidence if detections.shape[0] > box_count: detections = detections[np.argpartition(detections[:,1], -box_count)[-box_count:]] detections = detections.copy() detections.resize((box_count, 6)) return detections