import ctypes import logging import os import subprocess import sys import cv2 import numpy as np from pydantic import Field from typing_extensions import Literal from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import ( BaseDetectorConfig, ModelTypeEnum, PixelFormatEnum, ) logger = logging.getLogger(__name__) DETECTOR_KEY = "rocm" def detect_gfx_version(): return subprocess.getoutput( "unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'" ) def auto_override_gfx_version(): # If environment variable already in place, do not override gfx_version = detect_gfx_version() old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION") if old_override not in (None, ""): logger.warning( f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!" ) return old_override mapping = { "gfx90c": "9.0.0", "gfx1031": "10.3.0", "gfx1103": "11.0.0", } override = mapping.get(gfx_version) if override is not None: logger.warning( f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}" ) os.putenv("HSA_OVERRIDE_GFX_VERSION", override) return override return "" class ROCmDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] conserve_cpu: bool = Field( default=True, title="Conserve CPU at the expense of latency (and reduced max throughput)", ) auto_override_gfx: bool = Field( default=True, title="Automatically detect and override gfx version" ) class ROCmDetector(DetectionApi): type_key = DETECTOR_KEY def __init__(self, detector_config: ROCmDetectorConfig): if detector_config.auto_override_gfx: auto_override_gfx_version() try: sys.path.append("/opt/rocm/lib") import migraphx logger.info("AMD/ROCm: loaded migraphx module") except ModuleNotFoundError: logger.error("AMD/ROCm: module loading failed, missing ROCm environment?") raise if detector_config.conserve_cpu: logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU") ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4) self.h = detector_config.model.height self.w = detector_config.model.width self.rocm_model_type = detector_config.model.model_type self.rocm_model_px = detector_config.model.input_pixel_format path = detector_config.model.path mxr_path = os.path.splitext(path)[0] + ".mxr" if path.endswith(".mxr"): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) elif os.path.exists(mxr_path): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) else: logger.info(f"AMD/ROCm: loading model from {path}") if ( path.endswith(".tf") or path.endswith(".tf2") or path.endswith(".tflite") ): # untested self.model = migraphx.parse_tf(path) else: self.model = migraphx.parse_onnx(path) logger.info("AMD/ROCm: compiling the model") self.model.compile( migraphx.get_target("gpu"), offload_copy=True, fast_math=True ) logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}") os.makedirs("/config/model_cache/rocm", exist_ok=True) migraphx.save(self.model, mxr_path) logger.info("AMD/ROCm: model loaded") def detect_raw(self, tensor_input): model_input_name = self.model.get_parameter_names()[0] model_input_shape = tuple( self.model.get_parameter_shapes()[model_input_name].lens() ) tensor_input = cv2.dnn.blobFromImage( tensor_input[0], 1.0, (model_input_shape[3], model_input_shape[2]), None, swapRB=self.rocm_model_px == PixelFormatEnum.bgr, ).astype(np.uint8) detector_result = self.model.run({model_input_name: tensor_input})[0] addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float)) tensor_output = np.ctypeslib.as_array( addr, shape=detector_result.get_shape().lens() ) if self.rocm_model_type == ModelTypeEnum.yolonas: predictions = tensor_output detections = np.zeros((20, 6), np.float32) for i, prediction in enumerate(predictions): if i == 20: break (_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction # when running in GPU mode, empty predictions in the output have class_id of -1 if class_id < 0: break detections[i] = [ class_id, confidence, y_min / self.h, x_min / self.w, y_max / self.h, x_max / self.w, ] return detections else: raise Exception( f"{self.rocm_model_type} is currently not supported for rocm. See the docs for more info on supported models." )