import logging import sys import os import numpy as np import ctypes from pydantic import Field from typing_extensions import Literal import glob import cv2 from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig logger = logging.getLogger(__name__) DETECTOR_KEY = "rocm" # XXX several detectors run yolov8, this should probably be common code in some utils module def postprocess_yolov8(model_input_shape, tensor_output, box_count = 20): model_box_count = tensor_output.shape[2] model_class_count = tensor_output.shape[1] - 4 probs = tensor_output[0, 4:, :] all_ids = np.argmax(probs, axis=0) all_confidences = np.take(probs.T, model_class_count*np.arange(0, model_box_count) + all_ids) all_boxes = tensor_output[0, 0:4, :].T mask = (all_confidences > 0.30) class_ids = all_ids[mask] confidences = all_confidences[mask] cx, cy, w, h = all_boxes[mask].T scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3] detections = np.stack((class_ids, confidences, scale_y * (cy - h / 2), scale_x * (cx - w / 2), scale_y * (cy + h / 2), scale_x * (cx + w / 2)), axis=1) if detections.shape[0] > box_count: detections = detections[np.argpartition(detections[:,1], -box_count)[-box_count:]] detections.resize((box_count, 6)) return detections class ROCmDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] class ROCmDetector(DetectionApi): type_key = DETECTOR_KEY def __init__(self, detector_config: ROCmDetectorConfig): try: sys.path.append("/opt/rocm/lib") import migraphx logger.info(f"AMD/ROCm: loaded migraphx module") except ValueError: logger.error( "AMD/ROCm: module loading failed, missing ROCm environment?" ) raise assert detector_config.model.model_type == 'yolov8', "AMD/ROCm: detector_config.model.model_type: only yolov8 supported" assert detector_config.model.input_tensor == 'nhwc', "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported" if detector_config.model.input_pixel_format != 'rgb': logger.warn("AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!") assert detector_config.model.path is not None, "No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/*.onnx")) + " and " + ', '.join(glob.glob("/*_labels.txt")) path = detector_config.model.path mxr_path = "/config/model_cache/rocm/" + os.path.basename(os.path.splitext(path)[0] + '.mxr') if path.endswith('.mxr'): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) elif os.path.exists(mxr_path): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) else: logger.info(f"AMD/ROCm: loading model from {path}") if path.endswith('.onnx'): self.model = migraphx.parse_onnx(path) elif path.endswith('.tf') or path.endswith('.tf2') or path.endswith('.tflite'): # untested self.model = migraphx.parse_tf(path) else: raise Exception(f"AMD/ROCm: unkown model format {path}") logger.info(f"AMD/ROCm: compiling the model") self.model.compile(migraphx.get_target('gpu'), offload_copy=True, fast_math=True) logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}") os.makedirs("/config/model_cache/rocm", exist_ok=True) migraphx.save(self.model, mxr_path) logger.info(f"AMD/ROCm: model loaded") def detect_raw(self, tensor_input): model_input_name = self.model.get_parameter_names()[0]; model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens()); tensor_input = cv2.dnn.blobFromImage(tensor_input[0], 1.0 / 255, (model_input_shape[3], model_input_shape[2]), None, swapRB=False) detector_result = self.model.run({model_input_name: tensor_input})[0] addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float)) tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens()) return postprocess_yolov8(model_input_shape, tensor_output)