"""Handle creating audio events.""" import datetime import logging import multiprocessing as mp import os import signal import threading from types import FrameType from typing import Optional, Tuple import numpy as np import requests from setproctitle import setproctitle from frigate.comms.inter_process import InterProcessCommunicator from frigate.config import CameraConfig, FrigateConfig from frigate.const import ( AUDIO_DURATION, AUDIO_FORMAT, AUDIO_MAX_BIT_RANGE, AUDIO_SAMPLE_RATE, CACHE_DIR, FRIGATE_LOCALHOST, ) from frigate.ffmpeg_presets import parse_preset_input from frigate.log import LogPipe from frigate.object_detection import load_labels from frigate.types import FeatureMetricsTypes from frigate.util.builtin import get_ffmpeg_arg_list from frigate.util.services import listen from frigate.video import start_or_restart_ffmpeg, stop_ffmpeg try: from tflite_runtime.interpreter import Interpreter except ModuleNotFoundError: from tensorflow.lite.python.interpreter import Interpreter logger = logging.getLogger(__name__) def get_ffmpeg_command(input_args: list[str], input_path: str, pipe: str) -> list[str]: return get_ffmpeg_arg_list( f"ffmpeg {{}} -i {{}} -f {AUDIO_FORMAT} -ar {AUDIO_SAMPLE_RATE} -ac 1 -y {{}}".format( " ".join(input_args), input_path, pipe, ) ) def listen_to_audio( config: FrigateConfig, recordings_info_queue: mp.Queue, process_info: dict[str, FeatureMetricsTypes], inter_process_communicator: InterProcessCommunicator, ) -> None: stop_event = mp.Event() audio_threads: list[threading.Thread] = [] def exit_process() -> None: for thread in audio_threads: thread.join() logger.info("Exiting audio detector...") def receiveSignal(signalNumber: int, frame: Optional[FrameType]) -> None: stop_event.set() exit_process() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) threading.current_thread().name = "process:audio_manager" setproctitle("frigate.audio_manager") listen() for camera in config.cameras.values(): if camera.enabled and camera.audio.enabled_in_config: audio = AudioEventMaintainer( camera, recordings_info_queue, process_info, stop_event, inter_process_communicator, ) audio_threads.append(audio) audio.start() class AudioTfl: def __init__(self, stop_event: mp.Event): self.stop_event = stop_event self.labels = load_labels("/audio-labelmap.txt") self.interpreter = Interpreter( model_path="/cpu_audio_model.tflite", num_threads=2, ) self.interpreter.allocate_tensors() self.tensor_input_details = self.interpreter.get_input_details() self.tensor_output_details = self.interpreter.get_output_details() def _detect_raw(self, tensor_input): self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input) self.interpreter.invoke() detections = np.zeros((20, 6), np.float32) res = self.interpreter.get_tensor(self.tensor_output_details[0]["index"])[0] non_zero_indices = res > 0 class_ids = np.argpartition(-res, 20)[:20] class_ids = class_ids[np.argsort(-res[class_ids])] class_ids = class_ids[non_zero_indices[class_ids]] scores = res[class_ids] boxes = np.full((scores.shape[0], 4), -1, np.float32) count = len(scores) for i in range(count): if scores[i] < 0.4 or i == 20: break detections[i] = [ class_ids[i], float(scores[i]), boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3], ] return detections def detect(self, tensor_input, threshold=0.8): detections = [] if self.stop_event.is_set(): return detections raw_detections = self._detect_raw(tensor_input) for d in raw_detections: if d[1] < threshold: break detections.append( (self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5])) ) return detections class AudioEventMaintainer(threading.Thread): def __init__( self, camera: CameraConfig, recordings_info_queue: mp.Queue, feature_metrics: dict[str, FeatureMetricsTypes], stop_event: mp.Event, inter_process_communicator: InterProcessCommunicator, ) -> None: threading.Thread.__init__(self) self.name = f"{camera.name}_audio_event_processor" self.config = camera self.recordings_info_queue = recordings_info_queue self.feature_metrics = feature_metrics self.inter_process_communicator = inter_process_communicator self.detections: dict[dict[str, any]] = feature_metrics self.stop_event = stop_event self.detector = AudioTfl(stop_event) self.shape = (int(round(AUDIO_DURATION * AUDIO_SAMPLE_RATE)),) self.chunk_size = int(round(AUDIO_DURATION * AUDIO_SAMPLE_RATE * 2)) self.pipe = f"{CACHE_DIR}/{self.config.name}-audio" self.ffmpeg_cmd = get_ffmpeg_command( get_ffmpeg_arg_list(self.config.ffmpeg.global_args) + parse_preset_input("preset-rtsp-audio-only", 1), [i.path for i in self.config.ffmpeg.inputs if "audio" in i.roles][0], self.pipe, ) self.pipe_file = None self.logpipe = LogPipe(f"ffmpeg.{self.config.name}.audio") self.audio_listener = None def detect_audio(self, audio) -> None: if not self.feature_metrics[self.config.name]["audio_enabled"].value: return audio_as_float = audio.astype(np.float32) rms, dBFS = self.calculate_audio_levels(audio_as_float) # only run audio detection when volume is above min_volume if rms >= self.config.audio.min_volume: # add audio info to recordings queue self.recordings_info_queue.put( (self.config.name, datetime.datetime.now().timestamp(), dBFS) ) # create waveform relative to max range and look for detections waveform = (audio / AUDIO_MAX_BIT_RANGE).astype(np.float32) model_detections = self.detector.detect(waveform) for label, score, _ in model_detections: if label not in self.config.audio.listen: continue self.handle_detection(label, score) self.expire_detections() def calculate_audio_levels(self, audio_as_float: np.float32) -> Tuple[float, float]: # Calculate RMS (Root-Mean-Square) which represents the average signal amplitude # Note: np.float32 isn't serializable, we must use np.float64 to publish the message rms = np.sqrt(np.mean(np.absolute(np.square(audio_as_float)))) # Transform RMS to dBFS (decibels relative to full scale) dBFS = 20 * np.log10(np.abs(rms) / AUDIO_MAX_BIT_RANGE) self.inter_process_communicator.queue.put( (f"{self.config.name}/audio/dBFS", float(dBFS)) ) self.inter_process_communicator.queue.put( (f"{self.config.name}/audio/rms", float(rms)) ) return float(rms), float(dBFS) def handle_detection(self, label: str, score: float) -> None: if self.detections.get(label): self.detections[label][ "last_detection" ] = datetime.datetime.now().timestamp() else: self.inter_process_communicator.queue.put( (f"{self.config.name}/audio/{label}", "ON") ) resp = requests.post( f"{FRIGATE_LOCALHOST}/api/events/{self.config.name}/{label}/create", json={"duration": None, "source_type": "audio"}, ) if resp.status_code == 200: event_id = resp.json()["event_id"] self.detections[label] = { "id": event_id, "label": label, "last_detection": datetime.datetime.now().timestamp(), } def expire_detections(self) -> None: now = datetime.datetime.now().timestamp() for detection in self.detections.values(): if not detection: continue if ( now - detection.get("last_detection", now) > self.config.audio.max_not_heard ): self.inter_process_communicator.queue.put( (f"{self.config.name}/audio/{detection['label']}", "OFF") ) resp = requests.put( f"{FRIGATE_LOCALHOST}/api/events/{detection['id']}/end", json={ "end_time": detection["last_detection"] + self.config.record.events.post_capture }, ) if resp.status_code == 200: self.detections[detection["label"]] = None else: logger.warn( f"Failed to end audio event {detection['id']} with status code {resp.status_code}" ) def restart_audio_pipe(self) -> None: try: os.mkfifo(self.pipe) except FileExistsError: pass self.audio_listener = start_or_restart_ffmpeg( self.ffmpeg_cmd, logger, self.logpipe, None, self.audio_listener ) def read_audio(self) -> None: if self.pipe_file is None: self.pipe_file = open(self.pipe, "rb") try: audio = np.frombuffer(self.pipe_file.read(self.chunk_size), dtype=np.int16) self.detect_audio(audio) except BrokenPipeError: self.logpipe.dump() self.restart_audio_pipe() def run(self) -> None: self.restart_audio_pipe() while not self.stop_event.is_set(): self.read_audio() self.pipe_file.close() stop_ffmpeg(self.audio_listener, logger) self.logpipe.close()