import logging import sys import os import numpy as np import ctypes from pydantic import Field from typing_extensions import Literal import glob import subprocess from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig import frigate.detectors.yolo_utils as yolo_utils logger = logging.getLogger(__name__) DETECTOR_KEY = "rocm" def detect_gfx_version(): return subprocess.getoutput("unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'") def auto_override_gfx_version(): # If environment varialbe already in place, do not override gfx_version = detect_gfx_version() old_override = os.getenv('HSA_OVERRIDE_GFX_VERSION') if old_override not in (None, ''): logger.warning(f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!") return old_override mapping = { 'gfx90c': '9.0.0', 'gfx1031': '10.3.0', 'gfx1103': '11.0.0', } override = mapping.get(gfx_version) if override is not None: logger.warning(f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}") os.putenv('HSA_OVERRIDE_GFX_VERSION', override) return override return '' class ROCmDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] conserve_cpu: bool = Field(default=True, title="Conserve CPU at the expense of latency (and reduced max throughput)") auto_override_gfx: bool = Field(default=True, title="Automatically detect and override gfx version") class ROCmDetector(DetectionApi): type_key = DETECTOR_KEY def __init__(self, detector_config: ROCmDetectorConfig): if detector_config.auto_override_gfx: auto_override_gfx_version() try: sys.path.append("/opt/rocm/lib") import migraphx logger.info(f"AMD/ROCm: loaded migraphx module") except ModuleNotFoundError: logger.error( "AMD/ROCm: module loading failed, missing ROCm environment?" ) raise if detector_config.conserve_cpu: logger.info(f"AMD/ROCm: switching HIP to blocking mode to conserve CPU") ctypes.CDLL('/opt/rocm/lib/libamdhip64.so').hipSetDeviceFlags(4) assert detector_config.model.model_type == 'yolov8', "AMD/ROCm: detector_config.model.model_type: only yolov8 supported" assert detector_config.model.input_tensor == 'nhwc', "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported" if detector_config.model.input_pixel_format != 'rgb': logger.warn("AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!") assert detector_config.model.path is not None, "No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ', '.join(glob.glob("/config/model_cache/yolov8/*_labels.txt")) path = detector_config.model.path mxr_path = os.path.splitext(path)[0] + '.mxr' if path.endswith('.mxr'): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) elif os.path.exists(mxr_path): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) else: logger.info(f"AMD/ROCm: loading model from {path}") if path.endswith('.onnx'): self.model = migraphx.parse_onnx(path) elif path.endswith('.tf') or path.endswith('.tf2') or path.endswith('.tflite'): # untested self.model = migraphx.parse_tf(path) else: raise Exception(f"AMD/ROCm: unkown model format {path}") logger.info(f"AMD/ROCm: compiling the model") self.model.compile(migraphx.get_target('gpu'), offload_copy=True, fast_math=True) logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}") os.makedirs("/config/model_cache/rocm", exist_ok=True) migraphx.save(self.model, mxr_path) logger.info(f"AMD/ROCm: model loaded") self.class_aggregation = yolo_utils.generate_class_aggregation_from_config(detector_config) def detect_raw(self, tensor_input): model_input_name = self.model.get_parameter_names()[0]; model_input_shape = tuple(self.model.get_parameter_shapes()[model_input_name].lens()); tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32) detector_result = self.model.run({model_input_name: tensor_input})[0] addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float)) tensor_output = np.ctypeslib.as_array(addr, shape=detector_result.get_shape().lens()) return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output, class_aggregation = self.class_aggregation)