import logging import sys import os import numpy as np import ctypes from pydantic import Field from typing_extensions import Literal import glob import cv2 from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig import frigate.detectors.yolo_utils as yolo_utils logger = logging.getLogger(__name__) DETECTOR_KEY = "onnx" class ONNXDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] class ONNXDetector(DetectionApi): type_key = DETECTOR_KEY def __init__(self, detector_config: ONNXDetectorConfig): try: import onnxruntime logger.info(f"ONNX: loaded onnxruntime module") except ModuleNotFoundError: logger.error( "ONNX: module loading failed, need 'pip install onnxruntime'?!?" ) raise assert detector_config.model.model_type == 'yolov8', "ONNX: detector_config.model.model_type: only yolov8 supported" assert detector_config.model.input_tensor == 'nhwc', "ONNX: detector_config.model.input_tensor: only nhwc supported" if detector_config.model.input_pixel_format != 'rgb': logger.warn("ONNX: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!") assert detector_config.model.path is not None, "ONNX: no model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ', '.join(glob.glob("/*.onnx")) + " and " + ', '.join(glob.glob("/*_labels.txt")) path = detector_config.model.path logger.info(f"ONNX: loading {detector_config.model.path}") self.model = onnxruntime.InferenceSession(path) logger.info(f"ONNX: {path} loaded") def detect_raw(self, tensor_input): model_input_name = self.model.get_inputs()[0].name model_input_shape = self.model.get_inputs()[0].shape tensor_input = yolo_utils.preprocess(tensor_input, model_input_shape, np.float32) tensor_output = self.model.run(None, {model_input_name: tensor_input})[0] return yolo_utils.yolov8_postprocess(model_input_shape, tensor_output)