import datetime import signal import traceback import collections import numpy as np import cv2 import threading import matplotlib.pyplot as plt def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'): if color is None: color = (0,0,255) display_text = "{}: {}".format(label, info) cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness) font_scale = 0.5 font = cv2.FONT_HERSHEY_SIMPLEX # get the width and height of the text box size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2) text_width = size[0][0] text_height = size[0][1] line_height = text_height + size[1] # set the text start position if position == 'ul': text_offset_x = x_min text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) elif position == 'ur': text_offset_x = x_max - (text_width+8) text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) elif position == 'bl': text_offset_x = x_min text_offset_y = y_max elif position == 'br': text_offset_x = x_max - (text_width+8) text_offset_y = y_max # make the coords of the box with a small padding of two pixels textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height)) cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED) cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2) def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2): # size is larger than longest edge size = int(max(xmax-xmin, ymax-ymin)*multiplier) # if the size is too big to fit in the frame if size > min(frame_shape[0], frame_shape[1]): size = min(frame_shape[0], frame_shape[1]) # x_offset is midpoint of bounding box minus half the size x_offset = int((xmax-xmin)/2.0+xmin-size/2.0) # if outside the image if x_offset < 0: x_offset = 0 elif x_offset > (frame_shape[1]-size): x_offset = (frame_shape[1]-size) # y_offset is midpoint of bounding box minus half the size y_offset = int((ymax-ymin)/2.0+ymin-size/2.0) # if outside the image if y_offset < 0: y_offset = 0 elif y_offset > (frame_shape[0]-size): y_offset = (frame_shape[0]-size) return (x_offset, y_offset, x_offset+size, y_offset+size) def intersection(box_a, box_b): return ( max(box_a[0], box_b[0]), max(box_a[1], box_b[1]), min(box_a[2], box_b[2]), min(box_a[3], box_b[3]) ) def area(box): return (box[2]-box[0] + 1)*(box[3]-box[1] + 1) def intersection_over_union(box_a, box_b): # determine the (x, y)-coordinates of the intersection rectangle intersect = intersection(box_a, box_b) # compute the area of intersection rectangle inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1) if inter_area == 0: return 0.0 # compute the area of both the prediction and ground-truth # rectangles box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1) box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1) # compute the intersection over union by taking the intersection # area and dividing it by the sum of prediction + ground-truth # areas - the interesection area iou = inter_area / float(box_a_area + box_b_area - inter_area) # return the intersection over union value return iou def clipped(obj, frame_shape): # if the object is within 5 pixels of the region border, and the region is not on the edge # consider the object to be clipped box = obj[2] region = obj[4] if ((region[0] > 5 and box[0]-region[0] <= 5) or (region[1] > 5 and box[1]-region[1] <= 5) or (frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or (frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)): return True else: return False class EventsPerSecond: def __init__(self, max_events=1000): self._start = None self._max_events = max_events self._timestamps = [] def start(self): self._start = datetime.datetime.now().timestamp() def update(self): self._timestamps.append(datetime.datetime.now().timestamp()) # truncate the list when it goes 100 over the max_size if len(self._timestamps) > self._max_events+100: self._timestamps = self._timestamps[(1-self._max_events):] def eps(self, last_n_seconds=10): # compute the (approximate) events in the last n seconds now = datetime.datetime.now().timestamp() seconds = min(now-self._start, last_n_seconds) return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds def print_stack(sig, frame): traceback.print_stack(frame) def listen(): signal.signal(signal.SIGUSR1, print_stack)