import ctypes import glob import logging import os import subprocess import sys import numpy as np from pydantic import Field from typing_extensions import Literal from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig from frigate.detectors.util import preprocess, yolov8_postprocess logger = logging.getLogger(__name__) DETECTOR_KEY = "rocm" def detect_gfx_version(): return subprocess.getoutput( "unset HSA_OVERRIDE_GFX_VERSION && /opt/rocm/bin/rocminfo | grep gfx |head -1|awk '{print $2}'" ) def auto_override_gfx_version(): # If environment variable already in place, do not override gfx_version = detect_gfx_version() old_override = os.getenv("HSA_OVERRIDE_GFX_VERSION") if old_override not in (None, ""): logger.warning( f"AMD/ROCm: detected {gfx_version} but HSA_OVERRIDE_GFX_VERSION already present ({old_override}), not overriding!" ) return old_override mapping = { "gfx90c": "9.0.0", "gfx1031": "10.3.0", "gfx1103": "11.0.0", } override = mapping.get(gfx_version) if override is not None: logger.warning( f"AMD/ROCm: detected {gfx_version}, overriding HSA_OVERRIDE_GFX_VERSION={override}" ) os.putenv("HSA_OVERRIDE_GFX_VERSION", override) return override return "" class ROCmDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] conserve_cpu: bool = Field( default=True, title="Conserve CPU at the expense of latency (and reduced max throughput)", ) auto_override_gfx: bool = Field( default=True, title="Automatically detect and override gfx version" ) class ROCmDetector(DetectionApi): type_key = DETECTOR_KEY def __init__(self, detector_config: ROCmDetectorConfig): if detector_config.auto_override_gfx: auto_override_gfx_version() try: sys.path.append("/opt/rocm/lib") import migraphx logger.info("AMD/ROCm: loaded migraphx module") except ModuleNotFoundError: logger.error("AMD/ROCm: module loading failed, missing ROCm environment?") raise if detector_config.conserve_cpu: logger.info("AMD/ROCm: switching HIP to blocking mode to conserve CPU") ctypes.CDLL("/opt/rocm/lib/libamdhip64.so").hipSetDeviceFlags(4) assert ( detector_config.model.model_type == "yolov8" ), "AMD/ROCm: detector_config.model.model_type: only yolov8 supported" assert ( detector_config.model.input_tensor == "nhwc" ), "AMD/ROCm: detector_config.model.input_tensor: only nhwc supported" if detector_config.model.input_pixel_format != "rgb": logger.warn( "AMD/ROCm: detector_config.model.input_pixel_format: should be 'rgb' for yolov8, but '{detector_config.model.input_pixel_format}' specified!" ) assert detector_config.model.path is not None, ( "No model.path configured, please configure model.path and model.labelmap_path; some suggestions: " + ", ".join(glob.glob("/config/model_cache/yolov8/*.onnx")) + " and " + ", ".join(glob.glob("/config/model_cache/yolov8/*_labels.txt")) ) path = detector_config.model.path mxr_path = os.path.splitext(path)[0] + ".mxr" if path.endswith(".mxr"): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) elif os.path.exists(mxr_path): logger.info(f"AMD/ROCm: loading parsed model from {mxr_path}") self.model = migraphx.load(mxr_path) else: logger.info(f"AMD/ROCm: loading model from {path}") if path.endswith(".onnx"): self.model = migraphx.parse_onnx(path) elif ( path.endswith(".tf") or path.endswith(".tf2") or path.endswith(".tflite") ): # untested self.model = migraphx.parse_tf(path) else: raise Exception(f"AMD/ROCm: unknown model format {path}") logger.info("AMD/ROCm: compiling the model") self.model.compile( migraphx.get_target("gpu"), offload_copy=True, fast_math=True ) logger.info(f"AMD/ROCm: saving parsed model into {mxr_path}") os.makedirs("/config/model_cache/rocm", exist_ok=True) migraphx.save(self.model, mxr_path) logger.info("AMD/ROCm: model loaded") def detect_raw(self, tensor_input): model_input_name = self.model.get_parameter_names()[0] model_input_shape = tuple( self.model.get_parameter_shapes()[model_input_name].lens() ) tensor_input = preprocess(tensor_input, model_input_shape, np.float32) detector_result = self.model.run({model_input_name: tensor_input})[0] addr = ctypes.cast(detector_result.data_ptr(), ctypes.POINTER(ctypes.c_float)) tensor_output = np.ctypeslib.as_array( addr, shape=detector_result.get_shape().lens() ) return yolov8_postprocess(model_input_shape, tensor_output)