"""Object attribute.""" import base64 import logging from collections import defaultdict from statistics import median from typing import Optional import cv2 import numpy as np from frigate.config import ( CameraConfig, ModelConfig, ) from frigate.review.types import SeverityEnum from frigate.util.image import ( area, calculate_region, draw_box_with_label, draw_timestamp, is_better_thumbnail, ) from frigate.util.object import box_inside logger = logging.getLogger(__name__) class TrackedObject: def __init__( self, model_config: ModelConfig, camera_config: CameraConfig, frame_cache, obj_data: dict[str, any], ): # set the score history then remove as it is not part of object state self.score_history = obj_data["score_history"] del obj_data["score_history"] self.obj_data = obj_data self.colormap = model_config.colormap self.logos = model_config.all_attribute_logos self.camera_config = camera_config self.frame_cache = frame_cache self.zone_presence: dict[str, int] = {} self.zone_loitering: dict[str, int] = {} self.current_zones = [] self.entered_zones = [] self.attributes = defaultdict(float) self.false_positive = True self.has_clip = False self.has_snapshot = False self.top_score = self.computed_score = 0.0 self.thumbnail_data = None self.last_updated = 0 self.last_published = 0 self.frame = None self.active = True self.pending_loitering = False self.previous = self.to_dict() @property def max_severity(self) -> Optional[str]: review_config = self.camera_config.review if self.obj_data["label"] in review_config.alerts.labels and ( not review_config.alerts.required_zones or set(self.entered_zones) & set(review_config.alerts.required_zones) ): return SeverityEnum.alert if ( not review_config.detections.labels or self.obj_data["label"] in review_config.detections.labels ) and ( not review_config.detections.required_zones or set(self.entered_zones) & set(review_config.detections.required_zones) ): return SeverityEnum.detection return None def _is_false_positive(self): # once a true positive, always a true positive if not self.false_positive: return False threshold = self.camera_config.objects.filters[self.obj_data["label"]].threshold return self.computed_score < threshold def compute_score(self): """get median of scores for object.""" return median(self.score_history) def update(self, current_frame_time: float, obj_data, has_valid_frame: bool): thumb_update = False significant_change = False autotracker_update = False # if the object is not in the current frame, add a 0.0 to the score history if obj_data["frame_time"] != current_frame_time: self.score_history.append(0.0) else: self.score_history.append(obj_data["score"]) # only keep the last 10 scores if len(self.score_history) > 10: self.score_history = self.score_history[-10:] # calculate if this is a false positive self.computed_score = self.compute_score() if self.computed_score > self.top_score: self.top_score = self.computed_score self.false_positive = self._is_false_positive() self.active = self.is_active() if not self.false_positive and has_valid_frame: # determine if this frame is a better thumbnail if self.thumbnail_data is None or is_better_thumbnail( self.obj_data["label"], self.thumbnail_data, obj_data, self.camera_config.frame_shape, ): self.thumbnail_data = { "frame_time": current_frame_time, "box": obj_data["box"], "area": obj_data["area"], "region": obj_data["region"], "score": obj_data["score"], "attributes": obj_data["attributes"], } thumb_update = True # check zones current_zones = [] bottom_center = (obj_data["centroid"][0], obj_data["box"][3]) in_loitering_zone = False # check each zone for name, zone in self.camera_config.zones.items(): # if the zone is not for this object type, skip if len(zone.objects) > 0 and obj_data["label"] not in zone.objects: continue contour = zone.contour zone_score = self.zone_presence.get(name, 0) + 1 # check if the object is in the zone if cv2.pointPolygonTest(contour, bottom_center, False) >= 0: # if the object passed the filters once, dont apply again if name in self.current_zones or not zone_filtered(self, zone.filters): # an object is only considered present in a zone if it has a zone inertia of 3+ if zone_score >= zone.inertia: # if the zone has loitering time, update loitering status if zone.loitering_time > 0: in_loitering_zone = True loitering_score = self.zone_loitering.get(name, 0) + 1 # loitering time is configured as seconds, convert to count of frames if loitering_score >= ( self.camera_config.zones[name].loitering_time * self.camera_config.detect.fps ): current_zones.append(name) if name not in self.entered_zones: self.entered_zones.append(name) else: self.zone_loitering[name] = loitering_score else: self.zone_presence[name] = zone_score else: # once an object has a zone inertia of 3+ it is not checked anymore if 0 < zone_score < zone.inertia: self.zone_presence[name] = zone_score - 1 # update loitering status self.pending_loitering = in_loitering_zone # maintain attributes for attr in obj_data["attributes"]: if self.attributes[attr["label"]] < attr["score"]: self.attributes[attr["label"]] = attr["score"] # populate the sub_label for object with highest scoring logo if self.obj_data["label"] in ["car", "package", "person"]: recognized_logos = { k: self.attributes[k] for k in self.logos if k in self.attributes } if len(recognized_logos) > 0: max_logo = max(recognized_logos, key=recognized_logos.get) # don't overwrite sub label if it is already set if ( self.obj_data.get("sub_label") is None or self.obj_data["sub_label"][0] == max_logo ): self.obj_data["sub_label"] = (max_logo, recognized_logos[max_logo]) # check for significant change if not self.false_positive: # if the zones changed, signal an update if set(self.current_zones) != set(current_zones): significant_change = True # if the position changed, signal an update if self.obj_data["position_changes"] != obj_data["position_changes"]: significant_change = True if self.obj_data["attributes"] != obj_data["attributes"]: significant_change = True # if the state changed between stationary and active if self.previous["active"] != self.active: significant_change = True # update at least once per minute if self.obj_data["frame_time"] - self.previous["frame_time"] > 60: significant_change = True # update autotrack at most 3 objects per second if self.obj_data["frame_time"] - self.previous["frame_time"] >= (1 / 3): autotracker_update = True self.obj_data.update(obj_data) self.current_zones = current_zones return (thumb_update, significant_change, autotracker_update) def to_dict(self, include_thumbnail: bool = False): event = { "id": self.obj_data["id"], "camera": self.camera_config.name, "frame_time": self.obj_data["frame_time"], "snapshot": self.thumbnail_data, "label": self.obj_data["label"], "sub_label": self.obj_data.get("sub_label"), "top_score": self.top_score, "false_positive": self.false_positive, "start_time": self.obj_data["start_time"], "end_time": self.obj_data.get("end_time", None), "score": self.obj_data["score"], "box": self.obj_data["box"], "area": self.obj_data["area"], "ratio": self.obj_data["ratio"], "region": self.obj_data["region"], "active": self.active, "stationary": not self.active, "motionless_count": self.obj_data["motionless_count"], "position_changes": self.obj_data["position_changes"], "current_zones": self.current_zones.copy(), "entered_zones": self.entered_zones.copy(), "has_clip": self.has_clip, "has_snapshot": self.has_snapshot, "attributes": self.attributes, "current_attributes": self.obj_data["attributes"], "pending_loitering": self.pending_loitering, "max_severity": self.max_severity, } if include_thumbnail: event["thumbnail"] = base64.b64encode(self.get_thumbnail()).decode("utf-8") return event def is_active(self): return not self.is_stationary() def is_stationary(self): return ( self.obj_data["motionless_count"] > self.camera_config.detect.stationary.threshold ) def get_thumbnail(self): if ( self.thumbnail_data is None or self.thumbnail_data["frame_time"] not in self.frame_cache ): ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8)) jpg_bytes = self.get_jpg_bytes( timestamp=False, bounding_box=False, crop=True, height=175 ) if jpg_bytes: return jpg_bytes else: ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8)) return jpg.tobytes() def get_clean_png(self): if self.thumbnail_data is None: return None try: best_frame = cv2.cvtColor( self.frame_cache[self.thumbnail_data["frame_time"]], cv2.COLOR_YUV2BGR_I420, ) except KeyError: logger.warning( f"Unable to create clean png because frame {self.thumbnail_data['frame_time']} is not in the cache" ) return None ret, png = cv2.imencode(".png", best_frame) if ret: return png.tobytes() else: return None def get_jpg_bytes( self, timestamp=False, bounding_box=False, crop=False, height=None, quality=70 ): if self.thumbnail_data is None: return None try: best_frame = cv2.cvtColor( self.frame_cache[self.thumbnail_data["frame_time"]], cv2.COLOR_YUV2BGR_I420, ) except KeyError: logger.warning( f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache" ) return None if bounding_box: thickness = 2 color = self.colormap[self.obj_data["label"]] # draw the bounding boxes on the frame box = self.thumbnail_data["box"] draw_box_with_label( best_frame, box[0], box[1], box[2], box[3], self.obj_data["label"], f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color, ) # draw any attributes for attribute in self.thumbnail_data["attributes"]: box = attribute["box"] draw_box_with_label( best_frame, box[0], box[1], box[2], box[3], attribute["label"], f"{attribute['score']:.0%}", thickness=thickness, color=color, ) if crop: box = self.thumbnail_data["box"] box_size = 300 region = calculate_region( best_frame.shape, box[0], box[1], box[2], box[3], box_size, multiplier=1.1, ) best_frame = best_frame[region[1] : region[3], region[0] : region[2]] if height: width = int(height * best_frame.shape[1] / best_frame.shape[0]) best_frame = cv2.resize( best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA ) if timestamp: color = self.camera_config.timestamp_style.color draw_timestamp( best_frame, self.thumbnail_data["frame_time"], self.camera_config.timestamp_style.format, font_effect=self.camera_config.timestamp_style.effect, font_thickness=self.camera_config.timestamp_style.thickness, font_color=(color.blue, color.green, color.red), position=self.camera_config.timestamp_style.position, ) ret, jpg = cv2.imencode( ".jpg", best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), quality] ) if ret: return jpg.tobytes() else: return None def zone_filtered(obj: TrackedObject, object_config): object_name = obj.obj_data["label"] if object_name in object_config: obj_settings = object_config[object_name] # if the min area is larger than the # detected object, don't add it to detected objects if obj_settings.min_area > obj.obj_data["area"]: return True # if the detected object is larger than the # max area, don't add it to detected objects if obj_settings.max_area < obj.obj_data["area"]: return True # if the score is lower than the threshold, skip if obj_settings.threshold > obj.computed_score: return True # if the object is not proportionally wide enough if obj_settings.min_ratio > obj.obj_data["ratio"]: return True # if the object is proportionally too wide if obj_settings.max_ratio < obj.obj_data["ratio"]: return True return False class TrackedObjectAttribute: def __init__(self, raw_data: tuple) -> None: self.label = raw_data[0] self.score = raw_data[1] self.box = raw_data[2] self.area = raw_data[3] self.ratio = raw_data[4] self.region = raw_data[5] def get_tracking_data(self) -> dict[str, any]: """Return data saved to the object.""" return { "label": self.label, "score": self.score, "box": self.box, } def find_best_object(self, objects: list[dict[str, any]]) -> Optional[str]: """Find the best attribute for each object and return its ID.""" best_object_area = None best_object_id = None best_object_label = None for obj in objects: if not box_inside(obj["box"], self.box): continue object_area = area(obj["box"]) # if multiple objects have the same attribute then they # are overlapping, it is most likely that the smaller object # is the one with the attribute if best_object_area is None: best_object_area = object_area best_object_id = obj["id"] best_object_label = obj["label"] else: if best_object_label == "car" and obj["label"] == "car": # if multiple cars are overlapping with the same label then the label will not be assigned return None elif object_area < best_object_area: # if a car and person are overlapping then assign the label to the smaller object (which should be the person) best_object_area = object_area best_object_id = obj["id"] best_object_label = obj["label"] return best_object_id