import logging import os.path import urllib.request from typing import Literal import numpy as np try: from hide_warnings import hide_warnings except: # noqa: E722 def hide_warnings(func): pass from pydantic import Field from frigate.detectors.detection_api import DetectionApi from frigate.detectors.detector_config import BaseDetectorConfig logger = logging.getLogger(__name__) DETECTOR_KEY = "rknn" supported_socs = ["rk3562", "rk3566", "rk3568", "rk3588"] yolov8_suffix = { "default-yolov8n": "n", "default-yolov8s": "s", "default-yolov8m": "m", "default-yolov8l": "l", "default-yolov8x": "x", } class RknnDetectorConfig(BaseDetectorConfig): type: Literal[DETECTOR_KEY] core_mask: int = Field(default=0, ge=0, le=7, title="Core mask for NPU.") class Rknn(DetectionApi): type_key = DETECTOR_KEY def __init__(self, config: RknnDetectorConfig): # create symlink for Home Assistant add on if not os.path.isfile("/proc/device-tree/compatible"): if os.path.isfile("/device-tree/compatible"): os.symlink("/device-tree/compatible", "/proc/device-tree/compatible") # find out SoC try: with open("/proc/device-tree/compatible") as file: soc = file.read().split(",")[-1].strip("\x00") except FileNotFoundError: logger.error("Make sure to run docker in privileged mode.") raise Exception("Make sure to run docker in privileged mode.") if soc not in supported_socs: logger.error( "Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format( soc, supported_socs ) ) raise Exception( "Your SoC is not supported. Your SoC is: {}. Currently these SoCs are supported: {}.".format( soc, supported_socs ) ) if not os.path.isfile("/usr/lib/librknnrt.so"): if "rk356" in soc: os.rename("/usr/lib/librknnrt_rk356x.so", "/usr/lib/librknnrt.so") elif "rk3588" in soc: os.rename("/usr/lib/librknnrt_rk3588.so", "/usr/lib/librknnrt.so") self.model_path = config.model.path or "default-yolov8n" self.core_mask = config.core_mask self.height = config.model.height self.width = config.model.width if self.model_path in yolov8_suffix: if self.model_path == "default-yolov8n": self.model_path = "/models/rknn/yolov8n-320x320-{soc}.rknn".format( soc=soc ) else: model_suffix = yolov8_suffix[self.model_path] self.model_path = ( "/config/model_cache/rknn/yolov8{suffix}-320x320-{soc}.rknn".format( suffix=model_suffix, soc=soc ) ) os.makedirs("/config/model_cache/rknn", exist_ok=True) if not os.path.isfile(self.model_path): logger.info( "Downloading yolov8{suffix} model.".format(suffix=model_suffix) ) urllib.request.urlretrieve( "https://github.com/MarcA711/rknn-models/releases/download/v1.5.2-{soc}/yolov8{suffix}-320x320-{soc}.rknn".format( soc=soc, suffix=model_suffix ), self.model_path, ) if (config.model.width != 320) or (config.model.height != 320): logger.error( "Make sure to set the model width and height to 320 in your config.yml." ) raise Exception( "Make sure to set the model width and height to 320 in your config.yml." ) if config.model.input_pixel_format != "bgr": logger.error( 'Make sure to set the model input_pixel_format to "bgr" in your config.yml.' ) raise Exception( 'Make sure to set the model input_pixel_format to "bgr" in your config.yml.' ) if config.model.input_tensor != "nhwc": logger.error( 'Make sure to set the model input_tensor to "nhwc" in your config.yml.' ) raise Exception( 'Make sure to set the model input_tensor to "nhwc" in your config.yml.' ) from rknnlite.api import RKNNLite self.rknn = RKNNLite(verbose=False) if self.rknn.load_rknn(self.model_path) != 0: logger.error("Error initializing rknn model.") if self.rknn.init_runtime(core_mask=self.core_mask) != 0: logger.error( "Error initializing rknn runtime. Do you run docker in privileged mode?" ) def __del__(self): self.rknn.release() def postprocess(self, results): """ Processes yolov8 output. Args: results: array with shape: (1, 84, n, 1) where n depends on yolov8 model size (for 320x320 model n=2100) Returns: detections: array with shape (20, 6) with 20 rows of (class, confidence, y_min, x_min, y_max, x_max) """ results = np.transpose(results[0, :, :, 0]) # array shape (2100, 84) scores = np.max( results[:, 4:], axis=1 ) # array shape (2100,); max confidence of each row # remove lines with score scores < 0.4 filtered_arg = np.argwhere(scores > 0.4) results = results[filtered_arg[:, 0]] scores = scores[filtered_arg[:, 0]] num_detections = len(scores) if num_detections == 0: return np.zeros((20, 6), np.float32) if num_detections > 20: top_arg = np.argpartition(scores, -20)[-20:] results = results[top_arg] scores = scores[top_arg] num_detections = 20 classes = np.argmax(results[:, 4:], axis=1) boxes = np.transpose( np.vstack( ( (results[:, 1] - 0.5 * results[:, 3]) / self.height, (results[:, 0] - 0.5 * results[:, 2]) / self.width, (results[:, 1] + 0.5 * results[:, 3]) / self.height, (results[:, 0] + 0.5 * results[:, 2]) / self.width, ) ) ) detections = np.zeros((20, 6), np.float32) detections[:num_detections, 0] = classes detections[:num_detections, 1] = scores detections[:num_detections, 2:] = boxes return detections @hide_warnings def inference(self, tensor_input): return self.rknn.inference(inputs=tensor_input) def detect_raw(self, tensor_input): output = self.inference( [ tensor_input, ] ) return self.postprocess(output[0])