"""SQLite-vec embeddings database.""" import json import logging import multiprocessing as mp import os import signal import threading from types import FrameType from typing import Optional, Union from setproctitle import setproctitle from frigate.comms.embeddings_updater import EmbeddingsRequestEnum, EmbeddingsRequestor from frigate.config import FrigateConfig from frigate.const import CONFIG_DIR from frigate.db.sqlitevecq import SqliteVecQueueDatabase from frigate.models import Event from frigate.util.builtin import serialize from frigate.util.services import listen from .embeddings import Embeddings from .maintainer import EmbeddingMaintainer from .util import ZScoreNormalization logger = logging.getLogger(__name__) def manage_embeddings(config: FrigateConfig) -> None: # Only initialize embeddings if semantic search is enabled if not config.semantic_search.enabled: return stop_event = mp.Event() def receiveSignal(signalNumber: int, frame: Optional[FrameType]) -> None: stop_event.set() signal.signal(signal.SIGTERM, receiveSignal) signal.signal(signal.SIGINT, receiveSignal) threading.current_thread().name = "process:embeddings_manager" setproctitle("frigate.embeddings_manager") listen() # Configure Frigate DB db = SqliteVecQueueDatabase( config.database.path, pragmas={ "auto_vacuum": "FULL", # Does not defragment database "cache_size": -512 * 1000, # 512MB of cache "synchronous": "NORMAL", # Safe when using WAL https://www.sqlite.org/pragma.html#pragma_synchronous }, timeout=max(60, 10 * len([c for c in config.cameras.values() if c.enabled])), load_vec_extension=True, ) models = [Event] db.bind(models) embeddings = Embeddings(config.semantic_search, db) # Check if we need to re-index events if config.semantic_search.reindex: embeddings.reindex() maintainer = EmbeddingMaintainer( db, config, stop_event, ) maintainer.start() class EmbeddingsContext: def __init__(self, db: SqliteVecQueueDatabase): self.db = db self.thumb_stats = ZScoreNormalization() self.desc_stats = ZScoreNormalization() self.requestor = EmbeddingsRequestor() # load stats from disk try: with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "r") as f: data = json.loads(f.read()) self.thumb_stats.from_dict(data["thumb_stats"]) self.desc_stats.from_dict(data["desc_stats"]) except FileNotFoundError: pass def stop(self): """Write the stats to disk as JSON on exit.""" contents = { "thumb_stats": self.thumb_stats.to_dict(), "desc_stats": self.desc_stats.to_dict(), } with open(os.path.join(CONFIG_DIR, ".search_stats.json"), "w") as f: json.dump(contents, f) self.requestor.stop() def search_thumbnail( self, query: Union[Event, str], event_ids: list[str] = None ) -> list[tuple[str, float]]: if query.__class__ == Event: cursor = self.db.execute_sql( """ SELECT thumbnail_embedding FROM vec_thumbnails WHERE id = ? """, [query.id], ) row = cursor.fetchone() if cursor else None if row: query_embedding = row[0] else: # If no embedding found, generate it and return it query_embedding = serialize( self.requestor.send_data( EmbeddingsRequestEnum.embed_thumbnail.value, {"id": query.id, "thumbnail": query.thumbnail}, ) ) else: query_embedding = serialize( self.requestor.send_data( EmbeddingsRequestEnum.generate_search.value, query ) ) sql_query = """ SELECT id, distance FROM vec_thumbnails WHERE thumbnail_embedding MATCH ? AND k = 100 """ # Add the IN clause if event_ids is provided and not empty # this is the only filter supported by sqlite-vec as of 0.1.3 # but it seems to be broken in this version if event_ids: sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids))) # order by distance DESC is not implemented in this version of sqlite-vec # when it's implemented, we can use cosine similarity sql_query += " ORDER BY distance" parameters = [query_embedding] + event_ids if event_ids else [query_embedding] results = self.db.execute_sql(sql_query, parameters).fetchall() return results def search_description( self, query_text: str, event_ids: list[str] = None ) -> list[tuple[str, float]]: query_embedding = serialize( self.requestor.send_data( EmbeddingsRequestEnum.generate_search.value, query_text ) ) # Prepare the base SQL query sql_query = """ SELECT id, distance FROM vec_descriptions WHERE description_embedding MATCH ? AND k = 100 """ # Add the IN clause if event_ids is provided and not empty # this is the only filter supported by sqlite-vec as of 0.1.3 # but it seems to be broken in this version if event_ids: sql_query += " AND id IN ({})".format(",".join("?" * len(event_ids))) # order by distance DESC is not implemented in this version of sqlite-vec # when it's implemented, we can use cosine similarity sql_query += " ORDER BY distance" parameters = [query_embedding] + event_ids if event_ids else [query_embedding] results = self.db.execute_sql(sql_query, parameters).fetchall() return results def update_description(self, event_id: str, description: str) -> None: self.requestor.send_data( EmbeddingsRequestEnum.embed_description.value, {"id": event_id, "description": description}, )