blakeblackshear.frigate/frigate/config/classification.py
Nicolas Mowen b88fa9ece6
Object attribute classification (#19205)
* Add enum for type of classification for objects

* Update recognized license plate topic to be used as attribute updater

* Update attribute for attribute type object classification

* Cleanup
2025-07-18 09:28:02 -05:00

282 lines
9.1 KiB
Python

from enum import Enum
from typing import Dict, List, Optional
from pydantic import ConfigDict, Field
from .base import FrigateBaseModel
__all__ = [
"CameraFaceRecognitionConfig",
"CameraLicensePlateRecognitionConfig",
"FaceRecognitionConfig",
"SemanticSearchConfig",
"CameraSemanticSearchConfig",
"LicensePlateRecognitionConfig",
]
class SemanticSearchModelEnum(str, Enum):
jinav1 = "jinav1"
jinav2 = "jinav2"
class EnrichmentsDeviceEnum(str, Enum):
GPU = "GPU"
CPU = "CPU"
class TriggerType(str, Enum):
THUMBNAIL = "thumbnail"
DESCRIPTION = "description"
class TriggerAction(str, Enum):
NOTIFICATION = "notification"
class ObjectClassificationType(str, Enum):
sub_label = "sub_label"
attribute = "attribute"
class AudioTranscriptionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable audio transcription.")
language: str = Field(
default="en",
title="Language abbreviation to use for audio event transcription/translation.",
)
device: Optional[EnrichmentsDeviceEnum] = Field(
default=EnrichmentsDeviceEnum.CPU,
title="The device used for license plate recognition.",
)
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
enabled_in_config: Optional[bool] = Field(
default=None, title="Keep track of original state of camera."
)
live_enabled: Optional[bool] = Field(
default=False, title="Enable live transcriptions."
)
class BirdClassificationConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable bird classification.")
threshold: float = Field(
default=0.9,
title="Minimum classification score required to be considered a match.",
gt=0.0,
le=1.0,
)
class CustomClassificationStateCameraConfig(FrigateBaseModel):
crop: list[int, int, int, int] = Field(
title="Crop of image frame on this camera to run classification on."
)
class CustomClassificationStateConfig(FrigateBaseModel):
cameras: Dict[str, CustomClassificationStateCameraConfig] = Field(
title="Cameras to run classification on."
)
motion: bool = Field(
default=False,
title="If classification should be run when motion is detected in the crop.",
)
interval: int | None = Field(
default=None,
title="Interval to run classification on in seconds.",
gt=0,
)
class CustomClassificationObjectConfig(FrigateBaseModel):
objects: list[str] = Field(title="Object types to classify.")
classification_type: ObjectClassificationType = Field(
default=ObjectClassificationType.sub_label,
title="Type of classification that is applied.",
)
class CustomClassificationConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Enable running the model.")
name: str | None = Field(default=None, title="Name of classification model.")
threshold: float = Field(
default=0.8, title="Classification score threshold to change the state."
)
object_config: CustomClassificationObjectConfig | None = Field(default=None)
state_config: CustomClassificationStateConfig | None = Field(default=None)
class ClassificationConfig(FrigateBaseModel):
bird: BirdClassificationConfig = Field(
default_factory=BirdClassificationConfig, title="Bird classification config."
)
custom: Dict[str, CustomClassificationConfig] = Field(
default={}, title="Custom Classification Model Configs."
)
class SemanticSearchConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable semantic search.")
reindex: Optional[bool] = Field(
default=False, title="Reindex all tracked objects on startup."
)
model: Optional[SemanticSearchModelEnum] = Field(
default=SemanticSearchModelEnum.jinav1,
title="The CLIP model to use for semantic search.",
)
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
class TriggerConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Enable this trigger")
type: TriggerType = Field(default=TriggerType.DESCRIPTION, title="Type of trigger")
data: str = Field(title="Trigger content (text phrase or image ID)")
threshold: float = Field(
title="Confidence score required to run the trigger",
default=0.8,
gt=0.0,
le=1.0,
)
actions: Optional[List[TriggerAction]] = Field(
default=[], title="Actions to perform when trigger is matched"
)
model_config = ConfigDict(extra="forbid", protected_namespaces=())
class CameraSemanticSearchConfig(FrigateBaseModel):
triggers: Optional[Dict[str, TriggerConfig]] = Field(
default=None,
title="Trigger actions on tracked objects that match existing thumbnails or descriptions",
)
model_config = ConfigDict(extra="forbid", protected_namespaces=())
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
unknown_score: float = Field(
title="Minimum face distance score required to be marked as a potential match.",
default=0.8,
gt=0.0,
le=1.0,
)
detection_threshold: float = Field(
default=0.7,
title="Minimum face detection score required to be considered a face.",
gt=0.0,
le=1.0,
)
recognition_threshold: float = Field(
default=0.9,
title="Minimum face distance score required to be considered a match.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=750, title="Min area of face box to consider running face recognition."
)
min_faces: int = Field(
default=1,
gt=0,
le=6,
title="Min face attempts for the sub label to be applied to the person object.",
)
save_attempts: int = Field(
default=100, ge=0, title="Number of face attempts to save in the train tab."
)
blur_confidence_filter: bool = Field(
default=True, title="Apply blur quality filter to face confidence."
)
class CameraFaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
min_area: int = Field(
default=750, title="Min area of face box to consider running face recognition."
)
model_config = ConfigDict(extra="forbid", protected_namespaces=())
class LicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
device: Optional[EnrichmentsDeviceEnum] = Field(
default=EnrichmentsDeviceEnum.CPU,
title="The device used for license plate recognition.",
)
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
detection_threshold: float = Field(
default=0.7,
title="License plate object confidence score required to begin running recognition.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=1000,
title="Minimum area of license plate to begin running recognition.",
)
recognition_threshold: float = Field(
default=0.9,
title="Recognition confidence score required to add the plate to the object as a sub label.",
gt=0.0,
le=1.0,
)
min_plate_length: int = Field(
default=4,
title="Minimum number of characters a license plate must have to be added to the object as a sub label.",
)
format: Optional[str] = Field(
default=None,
title="Regular expression for the expected format of license plate.",
)
match_distance: int = Field(
default=1,
title="Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate.",
ge=0,
)
known_plates: Optional[Dict[str, List[str]]] = Field(
default={}, title="Known plates to track (strings or regular expressions)."
)
enhancement: int = Field(
default=0,
title="Amount of contrast adjustment and denoising to apply to license plate images before recognition.",
ge=0,
le=10,
)
debug_save_plates: bool = Field(
default=False,
title="Save plates captured for LPR for debugging purposes.",
)
class CameraLicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
expire_time: int = Field(
default=3,
title="Expire plates not seen after number of seconds (for dedicated LPR cameras only).",
gt=0,
)
min_area: int = Field(
default=1000,
title="Minimum area of license plate to begin running recognition.",
)
enhancement: int = Field(
default=0,
title="Amount of contrast adjustment and denoising to apply to license plate images before recognition.",
ge=0,
le=10,
)
model_config = ConfigDict(extra="forbid", protected_namespaces=())