mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-07-30 13:48:07 +02:00
* install new packages for transcription support * add config options * audio maintainer modifications to support transcription * pass main config to audio process * embeddings support * api and transcription post processor * embeddings maintainer support for post processor * live audio transcription with sherpa and faster-whisper * update dispatcher with live transcription topic * frontend websocket * frontend live transcription * frontend changes for speech events * i18n changes * docs * mqtt docs * fix linter * use float16 and small model on gpu for real-time * fix return value and use requestor to embed description instead of passing embeddings * run real-time transcription in its own thread * tweaks * publish live transcriptions on their own topic instead of tracked_object_update * config validator and docs * clarify docs
213 lines
7.3 KiB
Python
213 lines
7.3 KiB
Python
"""Handle post-processing for audio transcription."""
|
|
|
|
import logging
|
|
import os
|
|
import threading
|
|
import time
|
|
from typing import Optional
|
|
|
|
from faster_whisper import WhisperModel
|
|
from peewee import DoesNotExist
|
|
|
|
from frigate.comms.embeddings_updater import EmbeddingsRequestEnum
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.config import FrigateConfig
|
|
from frigate.const import (
|
|
CACHE_DIR,
|
|
MODEL_CACHE_DIR,
|
|
UPDATE_EVENT_DESCRIPTION,
|
|
)
|
|
from frigate.data_processing.types import PostProcessDataEnum
|
|
from frigate.types import TrackedObjectUpdateTypesEnum
|
|
from frigate.util.audio import get_audio_from_recording
|
|
|
|
from ..types import DataProcessorMetrics
|
|
from .api import PostProcessorApi
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AudioTranscriptionPostProcessor(PostProcessorApi):
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
requestor: InterProcessRequestor,
|
|
metrics: DataProcessorMetrics,
|
|
):
|
|
super().__init__(config, metrics, None)
|
|
self.config = config
|
|
self.requestor = requestor
|
|
self.recognizer = None
|
|
self.transcription_lock = threading.Lock()
|
|
self.transcription_thread = None
|
|
self.transcription_running = False
|
|
|
|
# faster-whisper handles model downloading automatically
|
|
self.model_path = os.path.join(MODEL_CACHE_DIR, "whisper")
|
|
os.makedirs(self.model_path, exist_ok=True)
|
|
|
|
self.__build_recognizer()
|
|
|
|
def __build_recognizer(self) -> None:
|
|
try:
|
|
self.recognizer = WhisperModel(
|
|
model_size_or_path="small",
|
|
device="cuda"
|
|
if self.config.audio_transcription.device == "GPU"
|
|
else "cpu",
|
|
download_root=self.model_path,
|
|
local_files_only=False, # Allow downloading if not cached
|
|
compute_type="int8",
|
|
)
|
|
logger.debug("Audio transcription (recordings) initialized")
|
|
except Exception as e:
|
|
logger.error(f"Failed to initialize recordings audio transcription: {e}")
|
|
self.recognizer = None
|
|
|
|
def process_data(
|
|
self, data: dict[str, any], data_type: PostProcessDataEnum
|
|
) -> None:
|
|
"""Transcribe audio from a recording.
|
|
|
|
Args:
|
|
data (dict): Contains data about the input (event_id, camera, etc.).
|
|
data_type (enum): Describes the data being processed (recording or tracked_object).
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
event_id = data["event_id"]
|
|
camera_name = data["camera"]
|
|
|
|
if data_type == PostProcessDataEnum.recording:
|
|
start_ts = data["frame_time"]
|
|
recordings_available_through = data["recordings_available"]
|
|
end_ts = min(recordings_available_through, start_ts + 60) # Default 60s
|
|
|
|
elif data_type == PostProcessDataEnum.tracked_object:
|
|
obj_data = data["event"]["data"]
|
|
obj_data["id"] = data["event"]["id"]
|
|
obj_data["camera"] = data["event"]["camera"]
|
|
start_ts = data["event"]["start_time"]
|
|
end_ts = data["event"].get(
|
|
"end_time", start_ts + 60
|
|
) # Use end_time if available
|
|
|
|
else:
|
|
logger.error("No data type passed to audio transcription post-processing")
|
|
return
|
|
|
|
try:
|
|
audio_data = get_audio_from_recording(
|
|
self.config.cameras[camera_name].ffmpeg,
|
|
camera_name,
|
|
start_ts,
|
|
end_ts,
|
|
sample_rate=16000,
|
|
)
|
|
|
|
if not audio_data:
|
|
logger.debug(f"No audio data extracted for {event_id}")
|
|
return
|
|
|
|
transcription = self.__transcribe_audio(audio_data)
|
|
if not transcription:
|
|
logger.debug("No transcription generated from audio")
|
|
return
|
|
|
|
logger.debug(f"Transcribed audio for {event_id}: '{transcription}'")
|
|
|
|
self.requestor.send_data(
|
|
UPDATE_EVENT_DESCRIPTION,
|
|
{
|
|
"type": TrackedObjectUpdateTypesEnum.description,
|
|
"id": event_id,
|
|
"description": transcription,
|
|
"camera": camera_name,
|
|
},
|
|
)
|
|
|
|
# Embed the description
|
|
self.requestor.send_data(
|
|
EmbeddingsRequestEnum.embed_description.value,
|
|
{"id": event_id, "description": transcription},
|
|
)
|
|
|
|
except DoesNotExist:
|
|
logger.debug("No recording found for audio transcription post-processing")
|
|
return
|
|
except Exception as e:
|
|
logger.error(f"Error in audio transcription post-processing: {e}")
|
|
|
|
def __transcribe_audio(self, audio_data: bytes) -> Optional[tuple[str, float]]:
|
|
"""Transcribe WAV audio data using faster-whisper."""
|
|
if not self.recognizer:
|
|
logger.debug("Recognizer not initialized")
|
|
return None
|
|
|
|
try:
|
|
# Save audio data to a temporary wav (faster-whisper expects a file)
|
|
temp_wav = os.path.join(CACHE_DIR, f"temp_audio_{int(time.time())}.wav")
|
|
with open(temp_wav, "wb") as f:
|
|
f.write(audio_data)
|
|
|
|
segments, info = self.recognizer.transcribe(
|
|
temp_wav,
|
|
language=self.config.audio_transcription.language,
|
|
beam_size=5,
|
|
)
|
|
|
|
os.remove(temp_wav)
|
|
|
|
# Combine all segment texts
|
|
text = " ".join(segment.text.strip() for segment in segments)
|
|
if not text:
|
|
return None
|
|
|
|
logger.debug(
|
|
"Detected language '%s' with probability %f"
|
|
% (info.language, info.language_probability)
|
|
)
|
|
|
|
return text
|
|
except Exception as e:
|
|
logger.error(f"Error transcribing audio: {e}")
|
|
return None
|
|
|
|
def _transcription_wrapper(self, event: dict[str, any]) -> None:
|
|
"""Wrapper to run transcription and reset running flag when done."""
|
|
try:
|
|
self.process_data(
|
|
{
|
|
"event_id": event["id"],
|
|
"camera": event["camera"],
|
|
"event": event,
|
|
},
|
|
PostProcessDataEnum.tracked_object,
|
|
)
|
|
finally:
|
|
with self.transcription_lock:
|
|
self.transcription_running = False
|
|
self.transcription_thread = None
|
|
|
|
def handle_request(self, topic: str, request_data: dict[str, any]) -> str | None:
|
|
if topic == "transcribe_audio":
|
|
event = request_data["event"]
|
|
|
|
with self.transcription_lock:
|
|
if self.transcription_running:
|
|
logger.warning(
|
|
"Audio transcription for a speech event is already running."
|
|
)
|
|
return "in_progress"
|
|
|
|
# Mark as running and start the thread
|
|
self.transcription_running = True
|
|
self.transcription_thread = threading.Thread(
|
|
target=self._transcription_wrapper, args=(event,), daemon=True
|
|
)
|
|
self.transcription_thread.start()
|
|
return "started"
|
|
|
|
return None
|