mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-08-08 13:51:01 +02:00
282 lines
9.8 KiB
Python
282 lines
9.8 KiB
Python
"""Handle processing audio for speech transcription using sherpa-onnx with FFmpeg pipe."""
|
|
|
|
import logging
|
|
import os
|
|
import queue
|
|
import threading
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.config import CameraConfig, FrigateConfig
|
|
from frigate.const import MODEL_CACHE_DIR
|
|
from frigate.data_processing.common.audio_transcription.model import (
|
|
AudioTranscriptionModelRunner,
|
|
)
|
|
from frigate.data_processing.real_time.whisper_online import (
|
|
FasterWhisperASR,
|
|
OnlineASRProcessor,
|
|
)
|
|
|
|
from ..types import DataProcessorMetrics
|
|
from .api import RealTimeProcessorApi
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class AudioTranscriptionRealTimeProcessor(RealTimeProcessorApi):
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
camera_config: CameraConfig,
|
|
requestor: InterProcessRequestor,
|
|
model_runner: AudioTranscriptionModelRunner,
|
|
metrics: DataProcessorMetrics,
|
|
stop_event: threading.Event,
|
|
):
|
|
super().__init__(config, metrics)
|
|
self.config = config
|
|
self.camera_config = camera_config
|
|
self.requestor = requestor
|
|
self.stream = None
|
|
self.whisper_model = None
|
|
self.model_runner = model_runner
|
|
self.transcription_segments = []
|
|
self.audio_queue = queue.Queue()
|
|
self.stop_event = stop_event
|
|
|
|
def __build_recognizer(self) -> None:
|
|
try:
|
|
if self.config.audio_transcription.model_size == "large":
|
|
# Whisper models need to be per-process and can only run one stream at a time
|
|
# TODO: try parallel: https://github.com/SYSTRAN/faster-whisper/issues/100
|
|
logger.debug(f"Loading Whisper model for {self.camera_config.name}")
|
|
self.whisper_model = FasterWhisperASR(
|
|
modelsize="tiny",
|
|
device="cuda"
|
|
if self.config.audio_transcription.device == "GPU"
|
|
else "cpu",
|
|
lan=self.config.audio_transcription.language,
|
|
model_dir=os.path.join(MODEL_CACHE_DIR, "whisper"),
|
|
)
|
|
self.whisper_model.use_vad()
|
|
self.stream = OnlineASRProcessor(
|
|
asr=self.whisper_model,
|
|
)
|
|
else:
|
|
logger.debug(f"Loading sherpa stream for {self.camera_config.name}")
|
|
self.stream = self.model_runner.model.create_stream()
|
|
logger.debug(
|
|
f"Audio transcription (live) initialized for {self.camera_config.name}"
|
|
)
|
|
except Exception as e:
|
|
logger.error(
|
|
f"Failed to initialize live streaming audio transcription: {e}"
|
|
)
|
|
|
|
def __process_audio_stream(
|
|
self, audio_data: np.ndarray
|
|
) -> Optional[tuple[str, bool]]:
|
|
if (
|
|
self.model_runner.model is None
|
|
and self.config.audio_transcription.model_size == "small"
|
|
):
|
|
logger.debug("Audio transcription (live) model not initialized")
|
|
return None
|
|
|
|
if not self.stream:
|
|
self.__build_recognizer()
|
|
|
|
try:
|
|
if audio_data.dtype != np.float32:
|
|
audio_data = audio_data.astype(np.float32)
|
|
|
|
if audio_data.max() > 1.0 or audio_data.min() < -1.0:
|
|
audio_data = audio_data / 32768.0 # Normalize from int16
|
|
|
|
rms = float(np.sqrt(np.mean(np.absolute(np.square(audio_data)))))
|
|
logger.debug(f"Audio chunk size: {audio_data.size}, RMS: {rms:.4f}")
|
|
|
|
if self.config.audio_transcription.model_size == "large":
|
|
# large model
|
|
self.stream.insert_audio_chunk(audio_data)
|
|
output = self.stream.process_iter()
|
|
text = output[2].strip()
|
|
is_endpoint = (
|
|
text.endswith((".", "!", "?"))
|
|
and sum(len(str(lines)) for lines in self.transcription_segments)
|
|
> 300
|
|
)
|
|
|
|
if text:
|
|
self.transcription_segments.append(text)
|
|
concatenated_text = " ".join(self.transcription_segments)
|
|
logger.debug(f"Concatenated transcription: '{concatenated_text}'")
|
|
text = concatenated_text
|
|
|
|
else:
|
|
# small model
|
|
self.stream.accept_waveform(16000, audio_data)
|
|
|
|
while self.model_runner.model.is_ready(self.stream):
|
|
self.model_runner.model.decode_stream(self.stream)
|
|
|
|
text = self.model_runner.model.get_result(self.stream).strip()
|
|
is_endpoint = self.model_runner.model.is_endpoint(self.stream)
|
|
|
|
logger.debug(f"Transcription result: '{text}'")
|
|
|
|
if not text:
|
|
logger.debug("No transcription, returning")
|
|
return None
|
|
|
|
logger.debug(f"Endpoint detected: {is_endpoint}")
|
|
|
|
if is_endpoint and self.config.audio_transcription.model_size == "small":
|
|
# reset sherpa if we've reached an endpoint
|
|
self.model_runner.model.reset(self.stream)
|
|
|
|
return text, is_endpoint
|
|
except Exception as e:
|
|
logger.error(f"Error processing audio stream: {e}")
|
|
return None
|
|
|
|
def process_frame(self, obj_data: dict[str, any], frame: np.ndarray) -> None:
|
|
pass
|
|
|
|
def process_audio(self, obj_data: dict[str, any], audio: np.ndarray) -> bool | None:
|
|
if audio is None or audio.size == 0:
|
|
logger.debug("No audio data provided for transcription")
|
|
return None
|
|
|
|
# enqueue audio data for processing in the thread
|
|
self.audio_queue.put((obj_data, audio))
|
|
return None
|
|
|
|
def run(self) -> None:
|
|
"""Run method for the transcription thread to process queued audio data."""
|
|
logger.debug(
|
|
f"Starting audio transcription thread for {self.camera_config.name}"
|
|
)
|
|
|
|
# start with an empty transcription
|
|
self.requestor.send_data(
|
|
f"{self.camera_config.name}/audio/transcription",
|
|
"",
|
|
)
|
|
|
|
while not self.stop_event.is_set():
|
|
try:
|
|
# Get audio data from queue with a timeout to check stop_event
|
|
_, audio = self.audio_queue.get(timeout=0.1)
|
|
result = self.__process_audio_stream(audio)
|
|
|
|
if not result:
|
|
continue
|
|
|
|
text, is_endpoint = result
|
|
logger.debug(f"Transcribed audio: '{text}', Endpoint: {is_endpoint}")
|
|
|
|
self.requestor.send_data(
|
|
f"{self.camera_config.name}/audio/transcription", text
|
|
)
|
|
|
|
self.audio_queue.task_done()
|
|
|
|
if is_endpoint:
|
|
self.reset()
|
|
|
|
except queue.Empty:
|
|
continue
|
|
except Exception as e:
|
|
logger.error(f"Error processing audio in thread: {e}")
|
|
self.audio_queue.task_done()
|
|
|
|
logger.debug(
|
|
f"Stopping audio transcription thread for {self.camera_config.name}"
|
|
)
|
|
|
|
def clear_audio_queue(self) -> None:
|
|
# Clear the audio queue
|
|
while not self.audio_queue.empty():
|
|
try:
|
|
self.audio_queue.get_nowait()
|
|
self.audio_queue.task_done()
|
|
except queue.Empty:
|
|
break
|
|
|
|
def reset(self) -> None:
|
|
if self.config.audio_transcription.model_size == "large":
|
|
# get final output from whisper
|
|
output = self.stream.finish()
|
|
self.transcription_segments = []
|
|
|
|
self.requestor.send_data(
|
|
f"{self.camera_config.name}/audio/transcription",
|
|
(output[2].strip() + " "),
|
|
)
|
|
|
|
# reset whisper
|
|
self.stream.init()
|
|
self.transcription_segments = []
|
|
else:
|
|
# reset sherpa
|
|
self.model_runner.model.reset(self.stream)
|
|
|
|
logger.debug("Stream reset")
|
|
|
|
def check_unload_model(self) -> None:
|
|
# regularly called in the loop in audio maintainer
|
|
if (
|
|
self.config.audio_transcription.model_size == "large"
|
|
and self.whisper_model is not None
|
|
):
|
|
logger.debug(f"Unloading Whisper model for {self.camera_config.name}")
|
|
self.clear_audio_queue()
|
|
self.transcription_segments = []
|
|
self.stream = None
|
|
self.whisper_model = None
|
|
|
|
self.requestor.send_data(
|
|
f"{self.camera_config.name}/audio/transcription",
|
|
"",
|
|
)
|
|
if (
|
|
self.config.audio_transcription.model_size == "small"
|
|
and self.stream is not None
|
|
):
|
|
logger.debug(f"Clearing sherpa stream for {self.camera_config.name}")
|
|
self.stream = None
|
|
|
|
self.requestor.send_data(
|
|
f"{self.camera_config.name}/audio/transcription",
|
|
"",
|
|
)
|
|
|
|
def stop(self) -> None:
|
|
"""Stop the transcription thread and clean up."""
|
|
self.stop_event.set()
|
|
# Clear the queue to prevent processing stale data
|
|
while not self.audio_queue.empty():
|
|
try:
|
|
self.audio_queue.get_nowait()
|
|
self.audio_queue.task_done()
|
|
except queue.Empty:
|
|
break
|
|
logger.debug(
|
|
f"Transcription thread stop signaled for {self.camera_config.name}"
|
|
)
|
|
|
|
def handle_request(
|
|
self, topic: str, request_data: dict[str, any]
|
|
) -> dict[str, any] | None:
|
|
if topic == "clear_audio_recognizer":
|
|
self.stream = None
|
|
self.__build_recognizer()
|
|
return {"message": "Audio recognizer cleared and rebuilt", "success": True}
|
|
return None
|
|
|
|
def expire_object(self, object_id: str) -> None:
|
|
pass
|