mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-07-30 13:48:07 +02:00
58 lines
1.8 KiB
Python
58 lines
1.8 KiB
Python
import logging
|
|
from abc import ABC, abstractmethod
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
|
|
from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DetectionApi(ABC):
|
|
type_key: str
|
|
supported_models: List[ModelTypeEnum]
|
|
|
|
@abstractmethod
|
|
def __init__(self, detector_config: BaseDetectorConfig):
|
|
self.detector_config = detector_config
|
|
self.thresh = 0.4
|
|
self.height = detector_config.model.height
|
|
self.width = detector_config.model.width
|
|
|
|
@abstractmethod
|
|
def detect_raw(self, tensor_input):
|
|
pass
|
|
|
|
def calculate_grids_strides(self, expanded=True) -> None:
|
|
grids = []
|
|
expanded_strides = []
|
|
|
|
# decode and orient predictions
|
|
strides = [8, 16, 32]
|
|
hsizes = [self.height // stride for stride in strides]
|
|
wsizes = [self.width // stride for stride in strides]
|
|
|
|
for hsize, wsize, stride in zip(hsizes, wsizes, strides):
|
|
xv, yv = np.meshgrid(np.arange(wsize), np.arange(hsize))
|
|
|
|
if expanded:
|
|
grid = np.stack((xv, yv), 2).reshape(1, -1, 2)
|
|
grids.append(grid)
|
|
shape = grid.shape[:2]
|
|
expanded_strides.append(np.full((*shape, 1), stride))
|
|
else:
|
|
xv = xv.reshape(1, 1, hsize, wsize)
|
|
yv = yv.reshape(1, 1, hsize, wsize)
|
|
grids.extend(np.concatenate((xv, yv), axis=1).tolist())
|
|
expanded_strides.extend(
|
|
np.array([stride, stride]).reshape(1, 2, 1, 1).tolist()
|
|
)
|
|
|
|
if expanded:
|
|
self.grids = np.concatenate(grids, 1)
|
|
self.expanded_strides = np.concatenate(expanded_strides, 1)
|
|
else:
|
|
self.grids = grids
|
|
self.expanded_strides = expanded_strides
|