blakeblackshear.frigate/frigate/detectors/detector_config.py
Martin Weinelt 4d4d54d030
Fix various typing issues (#18187)
* Fix the `Any` typing hint treewide

There has been confusion between the Any type[1] and the any function[2]
in typing hints.

[1] https://docs.python.org/3/library/typing.html#typing.Any
[2] https://docs.python.org/3/library/functions.html#any

* Fix typing for various frame_shape members

Frame shapes are most likely defined by height and width, so a single int
cannot express that.

* Wrap gpu stats functions in Optional[]

These can return `None`, so they need to be `Type | None`, which is what
`Optional` expresses very nicely.

* Fix return type in get_latest_segment_datetime

Returns a datetime object, not an integer.

* Make the return type of FrameManager.write optional

This is necessary since the SharedMemoryFrameManager.write function can
return None.

* Fix total_seconds() return type in get_tz_modifiers

The function returns a float, not an int.

https://docs.python.org/3/library/datetime.html#datetime.timedelta.total_seconds

* Account for floating point results in to_relative_box

Because the function uses division the return types may either be int or
float.

* Resolve ruff deprecation warning

The config has been split into formatter and linter, and the global
options are deprecated.
2025-05-13 08:27:20 -06:00

216 lines
7.0 KiB
Python

import hashlib
import json
import logging
import os
from enum import Enum
from typing import Any, Dict, Optional, Tuple
import requests
from pydantic import BaseModel, ConfigDict, Field
from pydantic.fields import PrivateAttr
from frigate.const import DEFAULT_ATTRIBUTE_LABEL_MAP, MODEL_CACHE_DIR
from frigate.plus import PlusApi
from frigate.util.builtin import generate_color_palette, load_labels
logger = logging.getLogger(__name__)
class PixelFormatEnum(str, Enum):
rgb = "rgb"
bgr = "bgr"
yuv = "yuv"
class InputTensorEnum(str, Enum):
nchw = "nchw"
nhwc = "nhwc"
hwnc = "hwnc"
hwcn = "hwcn"
class InputDTypeEnum(str, Enum):
float = "float"
float_denorm = "float_denorm" # non-normalized float
int = "int"
class ModelTypeEnum(str, Enum):
dfine = "dfine"
rfdetr = "rfdetr"
ssd = "ssd"
yolox = "yolox"
yolonas = "yolonas"
yologeneric = "yolo-generic"
class ModelConfig(BaseModel):
path: Optional[str] = Field(None, title="Custom Object detection model path.")
labelmap_path: Optional[str] = Field(
None, title="Label map for custom object detector."
)
width: int = Field(default=320, title="Object detection model input width.")
height: int = Field(default=320, title="Object detection model input height.")
labelmap: Dict[int, str] = Field(
default_factory=dict, title="Labelmap customization."
)
attributes_map: Dict[str, list[str]] = Field(
default=DEFAULT_ATTRIBUTE_LABEL_MAP,
title="Map of object labels to their attribute labels.",
)
input_tensor: InputTensorEnum = Field(
default=InputTensorEnum.nhwc, title="Model Input Tensor Shape"
)
input_pixel_format: PixelFormatEnum = Field(
default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format"
)
input_dtype: InputDTypeEnum = Field(
default=InputDTypeEnum.int, title="Model Input D Type"
)
model_type: ModelTypeEnum = Field(
default=ModelTypeEnum.ssd, title="Object Detection Model Type"
)
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
_all_attributes: list[str] = PrivateAttr()
_all_attribute_logos: list[str] = PrivateAttr()
_model_hash: str = PrivateAttr()
@property
def merged_labelmap(self) -> Dict[int, str]:
return self._merged_labelmap
@property
def colormap(self) -> Dict[int, Tuple[int, int, int]]:
return self._colormap
@property
def non_logo_attributes(self) -> list[str]:
return ["face", "license_plate"]
@property
def all_attributes(self) -> list[str]:
return self._all_attributes
@property
def all_attribute_logos(self) -> list[str]:
return self._all_attribute_logos
@property
def model_hash(self) -> str:
return self._model_hash
def __init__(self, **config):
super().__init__(**config)
self._merged_labelmap = {
**load_labels(config.get("labelmap_path", "/labelmap.txt")),
**config.get("labelmap", {}),
}
self._colormap = {}
# generate list of attribute labels
unique_attributes = set()
for attributes in self.attributes_map.values():
unique_attributes.update(attributes)
self._all_attributes = list(unique_attributes)
self._all_attribute_logos = list(
unique_attributes - set(self.non_logo_attributes)
)
def check_and_load_plus_model(
self, plus_api: PlusApi, detector: str = None
) -> None:
if not self.path or not self.path.startswith("plus://"):
return
# ensure that model cache dir exists
os.makedirs(MODEL_CACHE_DIR, exist_ok=True)
model_id = self.path[7:]
self.path = os.path.join(MODEL_CACHE_DIR, model_id)
model_info_path = f"{self.path}.json"
# download the model if it doesn't exist
if not os.path.isfile(self.path):
download_url = plus_api.get_model_download_url(model_id)
r = requests.get(download_url)
with open(self.path, "wb") as f:
f.write(r.content)
# download the model info if it doesn't exist
if not os.path.isfile(model_info_path):
model_info = plus_api.get_model_info(model_id)
with open(model_info_path, "w") as f:
json.dump(model_info, f)
else:
with open(model_info_path, "r") as f:
model_info: dict[str, Any] = json.load(f)
if detector and detector not in model_info["supportedDetectors"]:
raise ValueError(f"Model does not support detector type of {detector}")
self.width = model_info["width"]
self.height = model_info["height"]
self.input_tensor = model_info["inputShape"]
self.input_pixel_format = model_info["pixelFormat"]
self.model_type = model_info["type"]
# generate list of attribute labels
self.attributes_map = {
**model_info.get("attributes", DEFAULT_ATTRIBUTE_LABEL_MAP),
**self.attributes_map,
}
unique_attributes = set()
for attributes in self.attributes_map.values():
unique_attributes.update(attributes)
self._all_attributes = list(unique_attributes)
self._all_attribute_logos = list(
unique_attributes - set(["face", "license_plate"])
)
self._merged_labelmap = {
**{int(key): val for key, val in model_info["labelMap"].items()},
**self.labelmap,
}
def compute_model_hash(self) -> None:
if not self.path or not os.path.exists(self.path):
self._model_hash = hashlib.md5(b"unknown").hexdigest()
else:
with open(self.path, "rb") as f:
file_hash = hashlib.md5()
while chunk := f.read(8192):
file_hash.update(chunk)
self._model_hash = file_hash.hexdigest()
def create_colormap(self, enabled_labels: set[str]) -> None:
"""Get a list of colors for enabled labels that aren't attributes."""
enabled_trackable_labels = list(
filter(lambda label: label not in self._all_attributes, enabled_labels)
)
colors = generate_color_palette(len(enabled_trackable_labels))
self._colormap = {
label: color for label, color in zip(enabled_trackable_labels, colors)
}
model_config = ConfigDict(extra="forbid", protected_namespaces=())
class BaseDetectorConfig(BaseModel):
# the type field must be defined in all subclasses
type: str = Field(default="cpu", title="Detector Type")
model: Optional[ModelConfig] = Field(
default=None, title="Detector specific model configuration."
)
model_path: Optional[str] = Field(
default=None, title="Detector specific model path."
)
model_config = ConfigDict(
extra="allow", arbitrary_types_allowed=True, protected_namespaces=()
)