blakeblackshear.frigate/frigate/detectors/plugins/onnx.py
Nicolas Mowen 68382d89b4
Cleanup detection (#17785)
* Fix yolov9 NMS

* Improve batched yolo NMS

* Consolidate grids and strides calculation

* Use existing variable

* Remove

* Ensure init is called
2025-04-18 10:26:34 -06:00

120 lines
3.9 KiB
Python

import logging
import numpy as np
from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import (
BaseDetectorConfig,
ModelTypeEnum,
)
from frigate.util.model import (
get_ort_providers,
post_process_dfine,
post_process_rfdetr,
post_process_yolo,
post_process_yolox,
)
logger = logging.getLogger(__name__)
DETECTOR_KEY = "onnx"
class ONNXDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default="AUTO", title="Device Type")
class ONNXDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: ONNXDetectorConfig):
super().__init__(detector_config)
try:
import onnxruntime as ort
logger.info("ONNX: loaded onnxruntime module")
except ModuleNotFoundError:
logger.error(
"ONNX: module loading failed, need 'pip install onnxruntime'?!?"
)
raise
path = detector_config.model.path
logger.info(f"ONNX: loading {detector_config.model.path}")
providers, options = get_ort_providers(
detector_config.device == "CPU", detector_config.device
)
self.model = ort.InferenceSession(
path, providers=providers, provider_options=options
)
self.onnx_model_type = detector_config.model.model_type
self.onnx_model_px = detector_config.model.input_pixel_format
self.onnx_model_shape = detector_config.model.input_tensor
path = detector_config.model.path
if self.onnx_model_type == ModelTypeEnum.yolox:
self.calculate_grids_strides()
logger.info(f"ONNX: {path} loaded")
def detect_raw(self, tensor_input: np.ndarray):
if self.onnx_model_type == ModelTypeEnum.dfine:
tensor_output = self.model.run(
None,
{
"images": tensor_input,
"orig_target_sizes": np.array(
[[self.height, self.width]], dtype=np.int64
),
},
)
return post_process_dfine(tensor_output, self.width, self.height)
model_input_name = self.model.get_inputs()[0].name
tensor_output = self.model.run(None, {model_input_name: tensor_input})
if self.onnx_model_type == ModelTypeEnum.rfdetr:
return post_process_rfdetr(tensor_output)
elif self.onnx_model_type == ModelTypeEnum.yolonas:
predictions = tensor_output[0]
detections = np.zeros((20, 6), np.float32)
for i, prediction in enumerate(predictions):
if i == 20:
break
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
# when running in GPU mode, empty predictions in the output have class_id of -1
if class_id < 0:
break
detections[i] = [
class_id,
confidence,
y_min / self.height,
x_min / self.width,
y_max / self.height,
x_max / self.width,
]
return detections
elif self.onnx_model_type == ModelTypeEnum.yologeneric:
return post_process_yolo(tensor_output, self.width, self.height)
elif self.onnx_model_type == ModelTypeEnum.yolox:
return post_process_yolox(
tensor_output[0],
self.width,
self.height,
self.grids,
self.expanded_strides,
)
else:
raise Exception(
f"{self.onnx_model_type} is currently not supported for onnx. See the docs for more info on supported models."
)