blakeblackshear.frigate/frigate/util/builtin.py
Josh Hawkins 57bb0cc397
Semantic Search Triggers (#18969)
* semantic trigger test

* database and model

* config

* embeddings maintainer and trigger post-processor

* api to create, edit, delete triggers

* frontend and i18n keys

* use thumbnail and description for trigger types

* image picker tweaks

* initial sync

* thumbnail file management

* clean up logs and use saved thumbnail on frontend

* publish mqtt messages

* webpush changes to enable trigger notifications

* add enabled switch

* add triggers from explore

* renaming and deletion fixes

* fix typing

* UI updates and add last triggering event time and link

* log exception instead of return in endpoint

* highlight entry in UI when triggered

* save and delete thumbnails directly

* remove alert action for now and add descriptions

* tweaks

* clean up

* fix types

* docs

* docs tweaks

* docs

* reuse enum
2025-07-07 09:03:57 -05:00

447 lines
14 KiB
Python

"""Utilities for builtin types manipulation."""
import ast
import copy
import datetime
import logging
import math
import multiprocessing.queues
import queue
import re
import shlex
import struct
import urllib.parse
from collections.abc import Mapping
from multiprocessing.sharedctypes import Synchronized
from pathlib import Path
from typing import Any, Dict, Optional, Tuple, Union
from zoneinfo import ZoneInfoNotFoundError
import numpy as np
import pytz
from ruamel.yaml import YAML
from tzlocal import get_localzone
from frigate.const import REGEX_HTTP_CAMERA_USER_PASS, REGEX_RTSP_CAMERA_USER_PASS
logger = logging.getLogger(__name__)
class EventsPerSecond:
def __init__(self, max_events=1000, last_n_seconds=10) -> None:
self._start = None
self._max_events = max_events
self._last_n_seconds = last_n_seconds
self._timestamps = []
def start(self) -> None:
self._start = datetime.datetime.now().timestamp()
def update(self) -> None:
now = datetime.datetime.now().timestamp()
if self._start is None:
self._start = now
self._timestamps.append(now)
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events + 100:
self._timestamps = self._timestamps[(1 - self._max_events) :]
self.expire_timestamps(now)
def eps(self) -> float:
now = datetime.datetime.now().timestamp()
if self._start is None:
self._start = now
# compute the (approximate) events in the last n seconds
self.expire_timestamps(now)
seconds = min(now - self._start, self._last_n_seconds)
# avoid divide by zero
if seconds == 0:
seconds = 1
return len(self._timestamps) / seconds
# remove aged out timestamps
def expire_timestamps(self, now: float) -> None:
threshold = now - self._last_n_seconds
while self._timestamps and self._timestamps[0] < threshold:
del self._timestamps[0]
class InferenceSpeed:
def __init__(self, metric: Synchronized) -> None:
self.__metric = metric
self.__initialized = False
def update(self, inference_time: float) -> None:
if not self.__initialized:
self.__metric.value = inference_time
self.__initialized = True
return
self.__metric.value = (self.__metric.value * 9 + inference_time) / 10
def current(self) -> float:
return self.__metric.value
def deep_merge(dct1: dict, dct2: dict, override=False, merge_lists=False) -> dict:
"""
:param dct1: First dict to merge
:param dct2: Second dict to merge
:param override: if same key exists in both dictionaries, should override? otherwise ignore. (default=True)
:return: The merge dictionary
"""
merged = copy.deepcopy(dct1)
for k, v2 in dct2.items():
if k in merged:
v1 = merged[k]
if isinstance(v1, dict) and isinstance(v2, Mapping):
merged[k] = deep_merge(v1, v2, override)
elif isinstance(v1, list) and isinstance(v2, list):
if merge_lists:
merged[k] = v1 + v2
else:
if override:
merged[k] = copy.deepcopy(v2)
else:
merged[k] = copy.deepcopy(v2)
return merged
def clean_camera_user_pass(line: str) -> str:
"""Removes user and password from line."""
rtsp_cleaned = re.sub(REGEX_RTSP_CAMERA_USER_PASS, "://*:*@", line)
return re.sub(REGEX_HTTP_CAMERA_USER_PASS, "user=*&password=*", rtsp_cleaned)
def escape_special_characters(path: str) -> str:
"""Cleans reserved characters to encodings for ffmpeg."""
if len(path) > 1000:
return ValueError("Input too long to check")
try:
found = re.search(REGEX_RTSP_CAMERA_USER_PASS, path).group(0)[3:-1]
pw = found[(found.index(":") + 1) :]
return path.replace(pw, urllib.parse.quote_plus(pw))
except AttributeError:
# path does not have user:pass
return path
def get_ffmpeg_arg_list(arg: Any) -> list:
"""Use arg if list or convert to list format."""
return arg if isinstance(arg, list) else shlex.split(arg)
def load_labels(path: Optional[str], encoding="utf-8", prefill=91):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
if path is None:
return {}
with open(path, "r", encoding=encoding) as f:
labels = {index: "unknown" for index in range(prefill)}
lines = f.readlines()
if not lines:
return {}
if lines[0].split(" ", maxsplit=1)[0].isdigit():
pairs = [line.split(" ", maxsplit=1) for line in lines]
labels.update({int(index): label.strip() for index, label in pairs})
else:
labels.update({index: line.strip() for index, line in enumerate(lines)})
return labels
def get_tz_modifiers(tz_name: str) -> Tuple[str, str, float]:
seconds_offset = (
datetime.datetime.now(pytz.timezone(tz_name)).utcoffset().total_seconds()
)
hours_offset = int(seconds_offset / 60 / 60)
minutes_offset = int(seconds_offset / 60 - hours_offset * 60)
hour_modifier = f"{hours_offset} hour"
minute_modifier = f"{minutes_offset} minute"
return hour_modifier, minute_modifier, seconds_offset
def to_relative_box(
width: int, height: int, box: Tuple[int, int, int, int]
) -> Tuple[int | float, int | float, int | float, int | float]:
return (
box[0] / width, # x
box[1] / height, # y
(box[2] - box[0]) / width, # w
(box[3] - box[1]) / height, # h
)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
def process_config_query_string(query_string: Dict[str, list]) -> Dict[str, Any]:
updates = {}
for key_path_str, new_value_list in query_string.items():
# use the string key as-is for updates dictionary
if len(new_value_list) > 1:
updates[key_path_str] = new_value_list
else:
value = new_value_list[0]
try:
# no need to convert if we have a mask/zone string
value = ast.literal_eval(value) if "," not in value else value
except (ValueError, SyntaxError):
pass
updates[key_path_str] = value
return updates
def flatten_config_data(
config_data: Dict[str, Any], parent_key: str = ""
) -> Dict[str, Any]:
items = []
for key, value in config_data.items():
new_key = f"{parent_key}.{key}" if parent_key else key
if isinstance(value, dict):
items.extend(flatten_config_data(value, new_key).items())
else:
items.append((new_key, value))
return dict(items)
def update_yaml_file_bulk(file_path: str, updates: Dict[str, Any]):
yaml = YAML()
yaml.indent(mapping=2, sequence=4, offset=2)
try:
with open(file_path, "r") as f:
data = yaml.load(f)
except FileNotFoundError:
logger.error(
f"Unable to read from Frigate config file {file_path}. Make sure it exists and is readable."
)
return
# Apply all updates
for key_path_str, new_value in updates.items():
key_path = key_path_str.split(".")
for i in range(len(key_path)):
try:
index = int(key_path[i])
key_path[i] = (key_path[i - 1], index)
key_path.pop(i - 1)
except ValueError:
pass
data = update_yaml(data, key_path, new_value)
try:
with open(file_path, "w") as f:
yaml.dump(data, f)
except Exception as e:
logger.error(f"Unable to write to Frigate config file {file_path}: {e}")
def update_yaml(data, key_path, new_value):
temp = data
for key in key_path[:-1]:
if isinstance(key, tuple):
if key[0] not in temp:
temp[key[0]] = [{}] * max(1, key[1] + 1)
elif len(temp[key[0]]) <= key[1]:
temp[key[0]] += [{}] * (key[1] - len(temp[key[0]]) + 1)
temp = temp[key[0]][key[1]]
else:
if key not in temp or temp[key] is None:
temp[key] = {}
temp = temp[key]
last_key = key_path[-1]
if new_value == "":
if isinstance(last_key, tuple):
del temp[last_key[0]][last_key[1]]
else:
del temp[last_key]
else:
if isinstance(last_key, tuple):
if last_key[0] not in temp:
temp[last_key[0]] = [{}] * max(1, last_key[1] + 1)
elif len(temp[last_key[0]]) <= last_key[1]:
temp[last_key[0]] += [{}] * (last_key[1] - len(temp[last_key[0]]) + 1)
temp[last_key[0]][last_key[1]] = new_value
else:
if (
last_key in temp
and isinstance(temp[last_key], dict)
and isinstance(new_value, dict)
):
temp[last_key].update(new_value)
else:
temp[last_key] = new_value
return data
def find_by_key(dictionary, target_key):
if target_key in dictionary:
return dictionary[target_key]
else:
for value in dictionary.values():
if isinstance(value, dict):
result = find_by_key(value, target_key)
if result is not None:
return result
return None
def get_tomorrow_at_time(hour: int) -> datetime.datetime:
"""Returns the datetime of the following day at 2am."""
try:
tomorrow = datetime.datetime.now(get_localzone()) + datetime.timedelta(days=1)
except ZoneInfoNotFoundError:
tomorrow = datetime.datetime.now(datetime.timezone.utc) + datetime.timedelta(
days=1
)
logger.warning(
"Using utc for maintenance due to missing or incorrect timezone set"
)
return tomorrow.replace(hour=hour, minute=0, second=0).astimezone(
datetime.timezone.utc
)
def is_current_hour(timestamp: int) -> bool:
"""Returns if timestamp is in the current UTC hour."""
start_of_next_hour = (
datetime.datetime.now(datetime.timezone.utc).replace(
minute=0, second=0, microsecond=0
)
+ datetime.timedelta(hours=1)
).timestamp()
return timestamp < start_of_next_hour
def clear_and_unlink(file: Path, missing_ok: bool = True) -> None:
"""clear file then unlink to avoid space retained by file descriptors."""
if not missing_ok and not file.exists():
raise FileNotFoundError()
# empty contents of file before unlinking https://github.com/blakeblackshear/frigate/issues/4769
with open(file, "w"):
pass
file.unlink(missing_ok=missing_ok)
def empty_and_close_queue(q):
while True:
try:
q.get(block=True, timeout=0.5)
except (queue.Empty, EOFError):
break
except Exception as e:
logger.debug(f"Error while emptying queue: {e}")
break
# close the queue if it is a multiprocessing queue
# manager proxy queues do not have close or join_thread method
if isinstance(q, multiprocessing.queues.Queue):
try:
q.close()
q.join_thread()
except Exception:
pass
def generate_color_palette(n):
# mimic matplotlib's color scheme
base_colors = [
(31, 119, 180), # blue
(255, 127, 14), # orange
(44, 160, 44), # green
(214, 39, 40), # red
(148, 103, 189), # purple
(140, 86, 75), # brown
(227, 119, 194), # pink
(127, 127, 127), # gray
(188, 189, 34), # olive
(23, 190, 207), # cyan
]
def interpolate(color1, color2, factor):
return tuple(int(c1 + (c2 - c1) * factor) for c1, c2 in zip(color1, color2))
if n <= len(base_colors):
return base_colors[:n]
colors = base_colors.copy()
step = 1 / (n - len(base_colors) + 1)
extra_colors_needed = n - len(base_colors)
# interpolate between the base colors to generate more if needed
for i in range(extra_colors_needed):
index = i % (len(base_colors) - 1)
factor = (i + 1) * step
color1 = base_colors[index]
color2 = base_colors[index + 1]
colors.append(interpolate(color1, color2, factor))
return colors
def serialize(
vector: Union[list[float], np.ndarray, float], pack: bool = True
) -> bytes:
"""Serializes a list of floats, numpy array, or single float into a compact "raw bytes" format"""
if isinstance(vector, np.ndarray):
# Convert numpy array to list of floats
vector = vector.flatten().tolist()
elif isinstance(vector, (float, np.float32, np.float64)):
# Handle single float values
vector = [vector]
elif not isinstance(vector, list):
raise TypeError(
f"Input must be a list of floats, a numpy array, or a single float. Got {type(vector)}"
)
try:
if pack:
return struct.pack("%sf" % len(vector), *vector)
else:
return vector
except struct.error as e:
raise ValueError(f"Failed to pack vector: {e}. Vector: {vector}")
def deserialize(bytes_data: bytes) -> list[float]:
"""Deserializes a compact "raw bytes" format into a list of floats"""
return list(struct.unpack("%sf" % (len(bytes_data) // 4), bytes_data))
def sanitize_float(value):
"""Replace NaN or inf with 0.0."""
if isinstance(value, (int, float)) and not math.isfinite(value):
return 0.0
return value
def cosine_similarity(a: np.ndarray, b: np.ndarray) -> float:
return 1 - cosine_distance(a, b)
def cosine_distance(a: np.ndarray, b: np.ndarray) -> float:
"""Returns cosine distance to match sqlite-vec's calculation."""
dot = np.dot(a, b)
a_mag = np.dot(a, a) # ||a||^2
b_mag = np.dot(b, b) # ||b||^2
if a_mag == 0 or b_mag == 0:
return 1.0
return 1.0 - (dot / (np.sqrt(a_mag) * np.sqrt(b_mag)))