mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-07-30 13:48:07 +02:00
* Add option to not trim clip * Improve API * Update snapshot for new best objects * Fix missing strings * Convert to separate key * Always include bounding box on snapshots * improve autotracking relative zooming time calculation * update proxy docs to note the need for comma separated header roles * Add count translation * tracked object lifecycle i18n fix * update speed estimation docs * clarity * Re-initialize onvif information when toggling camera on live view * Move time ago to card info and add face area * Clarify face recognition docs * Increase minimum face recognition area * use clipFrom to in vod module endpoint to start at the correct time * Cleanup media api * Don't change duration * Use search detail dialog for face library * Move to segment based * Cleanup * Add back duration modification * clean up docs --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
172 lines
5.4 KiB
Python
172 lines
5.4 KiB
Python
from enum import Enum
|
|
from typing import Dict, List, Optional
|
|
|
|
from pydantic import ConfigDict, Field
|
|
|
|
from .base import FrigateBaseModel
|
|
|
|
__all__ = [
|
|
"CameraFaceRecognitionConfig",
|
|
"CameraLicensePlateRecognitionConfig",
|
|
"FaceRecognitionConfig",
|
|
"SemanticSearchConfig",
|
|
"LicensePlateRecognitionConfig",
|
|
]
|
|
|
|
|
|
class SemanticSearchModelEnum(str, Enum):
|
|
jinav1 = "jinav1"
|
|
jinav2 = "jinav2"
|
|
|
|
|
|
class LPRDeviceEnum(str, Enum):
|
|
GPU = "GPU"
|
|
CPU = "CPU"
|
|
|
|
|
|
class BirdClassificationConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable bird classification.")
|
|
threshold: float = Field(
|
|
default=0.9,
|
|
title="Minimum classification score required to be considered a match.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
|
|
|
|
class ClassificationConfig(FrigateBaseModel):
|
|
bird: BirdClassificationConfig = Field(
|
|
default_factory=BirdClassificationConfig, title="Bird classification config."
|
|
)
|
|
|
|
|
|
class SemanticSearchConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable semantic search.")
|
|
reindex: Optional[bool] = Field(
|
|
default=False, title="Reindex all tracked objects on startup."
|
|
)
|
|
model: Optional[SemanticSearchModelEnum] = Field(
|
|
default=SemanticSearchModelEnum.jinav1,
|
|
title="The CLIP model to use for semantic search.",
|
|
)
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
|
|
|
|
class FaceRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable face recognition.")
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
unknown_score: float = Field(
|
|
title="Minimum face distance score required to be marked as a potential match.",
|
|
default=0.8,
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
detection_threshold: float = Field(
|
|
default=0.7,
|
|
title="Minimum face detection score required to be considered a face.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
recognition_threshold: float = Field(
|
|
default=0.9,
|
|
title="Minimum face distance score required to be considered a match.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_area: int = Field(
|
|
default=750, title="Min area of face box to consider running face recognition."
|
|
)
|
|
save_attempts: int = Field(
|
|
default=100, ge=0, title="Number of face attempts to save in the train tab."
|
|
)
|
|
blur_confidence_filter: bool = Field(
|
|
default=True, title="Apply blur quality filter to face confidence."
|
|
)
|
|
|
|
|
|
class CameraFaceRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable face recognition.")
|
|
min_area: int = Field(
|
|
default=750, title="Min area of face box to consider running face recognition."
|
|
)
|
|
|
|
model_config = ConfigDict(extra="forbid", protected_namespaces=())
|
|
|
|
|
|
class LicensePlateRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable license plate recognition.")
|
|
device: Optional[LPRDeviceEnum] = Field(
|
|
default=LPRDeviceEnum.CPU,
|
|
title="The device used for license plate recognition.",
|
|
)
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
detection_threshold: float = Field(
|
|
default=0.7,
|
|
title="License plate object confidence score required to begin running recognition.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_area: int = Field(
|
|
default=1000,
|
|
title="Minimum area of license plate to begin running recognition.",
|
|
)
|
|
recognition_threshold: float = Field(
|
|
default=0.9,
|
|
title="Recognition confidence score required to add the plate to the object as a sub label.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_plate_length: int = Field(
|
|
default=4,
|
|
title="Minimum number of characters a license plate must have to be added to the object as a sub label.",
|
|
)
|
|
format: Optional[str] = Field(
|
|
default=None,
|
|
title="Regular expression for the expected format of license plate.",
|
|
)
|
|
match_distance: int = Field(
|
|
default=1,
|
|
title="Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate.",
|
|
ge=0,
|
|
)
|
|
known_plates: Optional[Dict[str, List[str]]] = Field(
|
|
default={}, title="Known plates to track (strings or regular expressions)."
|
|
)
|
|
enhancement: int = Field(
|
|
default=0,
|
|
title="Amount of contrast adjustment and denoising to apply to license plate images before recognition.",
|
|
ge=0,
|
|
le=10,
|
|
)
|
|
debug_save_plates: bool = Field(
|
|
default=False,
|
|
title="Save plates captured for LPR for debugging purposes.",
|
|
)
|
|
|
|
|
|
class CameraLicensePlateRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable license plate recognition.")
|
|
expire_time: int = Field(
|
|
default=3,
|
|
title="Expire plates not seen after number of seconds (for dedicated LPR cameras only).",
|
|
gt=0,
|
|
)
|
|
min_area: int = Field(
|
|
default=1000,
|
|
title="Minimum area of license plate to begin running recognition.",
|
|
)
|
|
enhancement: int = Field(
|
|
default=0,
|
|
title="Amount of contrast adjustment and denoising to apply to license plate images before recognition.",
|
|
ge=0,
|
|
le=10,
|
|
)
|
|
|
|
model_config = ConfigDict(extra="forbid", protected_namespaces=())
|