blakeblackshear.frigate/frigate/api/classification.py
Josh Hawkins dba9206898
Fixes (#18500)
* fix i18n keys

* hide disable from context menu for viewers

* Fix auto live check for default dashboard and camera groups

Disabling the Automatic Live View switch in Settings should prevent streaming from occurring. Overriding any settings in a camera group will override the global setting. The check here incorrectly always returned false instead of undefined.

* clarify hardware accelerated enrichments

* clarify

* add note about detect stream to face rec docs

* add note about low end Dahuas for autotracking

* Catch invalid face box / image

* Video tab tweaks

With the changes in https://github.com/blakeblackshear/frigate/pull/18220, the video tab in the Tracked Object Details pane now correctly trims the in-browser HLS video. Because of keyframes and record/detect stream differences, we can manually subtract a couple of seconds from the event start_time to ensure the first few frames aren't cut off from the video

* Clarify

* Don't use Migraphx by default

* Provide better support for running embeddings on GPU

* correctly join cameras

* Adjust blur confidence reduction

---------

Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
2025-06-03 06:33:32 -06:00

387 lines
12 KiB
Python

"""Object classification APIs."""
import datetime
import logging
import os
import shutil
from typing import Any
import cv2
from fastapi import APIRouter, Depends, Request, UploadFile
from fastapi.responses import JSONResponse
from pathvalidate import sanitize_filename
from peewee import DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.api.auth import require_role
from frigate.api.defs.request.classification_body import RenameFaceBody
from frigate.api.defs.tags import Tags
from frigate.config.camera import DetectConfig
from frigate.const import FACE_DIR
from frigate.embeddings import EmbeddingsContext
from frigate.models import Event
from frigate.util.path import get_event_snapshot
logger = logging.getLogger(__name__)
router = APIRouter(tags=[Tags.events])
@router.get("/faces")
def get_faces():
face_dict: dict[str, list[str]] = {}
if not os.path.exists(FACE_DIR):
return JSONResponse(status_code=200, content={})
for name in os.listdir(FACE_DIR):
face_dir = os.path.join(FACE_DIR, name)
if not os.path.isdir(face_dir):
continue
face_dict[name] = []
for file in filter(
lambda f: (f.lower().endswith((".webp", ".png", ".jpg", ".jpeg"))),
os.listdir(face_dir),
):
face_dict[name].append(file)
return JSONResponse(status_code=200, content=face_dict)
@router.post("/faces/reprocess", dependencies=[Depends(require_role(["admin"]))])
def reclassify_face(request: Request, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, Any] = body or {}
training_file = os.path.join(
FACE_DIR, f"train/{sanitize_filename(json.get('training_file', ''))}"
)
if not training_file or not os.path.isfile(training_file):
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid filename or no file exists: {training_file}",
}
),
status_code=404,
)
context: EmbeddingsContext = request.app.embeddings
response = context.reprocess_face(training_file)
return JSONResponse(
content=response,
status_code=200,
)
@router.post("/faces/train/{name}/classify")
def train_face(request: Request, name: str, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, Any] = body or {}
training_file_name = sanitize_filename(json.get("training_file", ""))
training_file = os.path.join(FACE_DIR, f"train/{training_file_name}")
event_id = json.get("event_id")
if not training_file_name and not event_id:
return JSONResponse(
content=(
{
"success": False,
"message": "A training file or event_id must be passed.",
}
),
status_code=400,
)
if training_file_name and not os.path.isfile(training_file):
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid filename or no file exists: {training_file_name}",
}
),
status_code=404,
)
sanitized_name = sanitize_filename(name)
new_name = f"{sanitized_name}-{datetime.datetime.now().timestamp()}.webp"
new_file_folder = os.path.join(FACE_DIR, f"{sanitized_name}")
if not os.path.exists(new_file_folder):
os.mkdir(new_file_folder)
if training_file_name:
shutil.move(training_file, os.path.join(new_file_folder, new_name))
else:
try:
event: Event = Event.get(Event.id == event_id)
except DoesNotExist:
return JSONResponse(
content=(
{
"success": False,
"message": f"Invalid event_id or no event exists: {event_id}",
}
),
status_code=404,
)
snapshot = get_event_snapshot(event)
face_box = event.data["attributes"][0]["box"]
detect_config: DetectConfig = request.app.frigate_config.cameras[
event.camera
].detect
# crop onto the face box minus the bounding box itself
x1 = int(face_box[0] * detect_config.width) + 2
y1 = int(face_box[1] * detect_config.height) + 2
x2 = x1 + int(face_box[2] * detect_config.width) - 4
y2 = y1 + int(face_box[3] * detect_config.height) - 4
face = snapshot[y1:y2, x1:x2]
success = True
if face.size > 0:
try:
cv2.imwrite(os.path.join(new_file_folder, new_name), face)
success = True
except Exception:
pass
if not success:
return JSONResponse(
content=(
{
"success": False,
"message": "Invalid face box or no face exists",
}
),
status_code=404,
)
context: EmbeddingsContext = request.app.embeddings
context.clear_face_classifier()
return JSONResponse(
content=(
{
"success": True,
"message": f"Successfully saved {training_file_name} as {new_name}.",
}
),
status_code=200,
)
@router.post("/faces/{name}/create", dependencies=[Depends(require_role(["admin"]))])
async def create_face(request: Request, name: str):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
os.makedirs(
os.path.join(FACE_DIR, sanitize_filename(name.replace(" ", "_"))), exist_ok=True
)
return JSONResponse(
status_code=200,
content={"success": False, "message": "Successfully created face folder."},
)
@router.post("/faces/{name}/register", dependencies=[Depends(require_role(["admin"]))])
async def register_face(request: Request, name: str, file: UploadFile):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
result = context.register_face(name, await file.read())
if not isinstance(result, dict):
return JSONResponse(
status_code=500,
content={
"success": False,
"message": "Could not process request. Try restarting Frigate.",
},
)
return JSONResponse(
status_code=200 if result.get("success", True) else 400,
content=result,
)
@router.post("/faces/recognize")
async def recognize_face(request: Request, file: UploadFile):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
result = context.recognize_face(await file.read())
if not isinstance(result, dict):
return JSONResponse(
status_code=500,
content={
"success": False,
"message": "Could not process request. Try restarting Frigate.",
},
)
return JSONResponse(
status_code=200 if result.get("success", True) else 400,
content=result,
)
@router.post("/faces/{name}/delete", dependencies=[Depends(require_role(["admin"]))])
def deregister_faces(request: Request, name: str, body: dict = None):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
json: dict[str, Any] = body or {}
list_of_ids = json.get("ids", "")
context: EmbeddingsContext = request.app.embeddings
context.delete_face_ids(
name, map(lambda file: sanitize_filename(file), list_of_ids)
)
return JSONResponse(
content=({"success": True, "message": "Successfully deleted faces."}),
status_code=200,
)
@router.put("/faces/{old_name}/rename", dependencies=[Depends(require_role(["admin"]))])
def rename_face(request: Request, old_name: str, body: RenameFaceBody):
if not request.app.frigate_config.face_recognition.enabled:
return JSONResponse(
status_code=400,
content={"message": "Face recognition is not enabled.", "success": False},
)
context: EmbeddingsContext = request.app.embeddings
try:
context.rename_face(old_name, body.new_name)
return JSONResponse(
content={
"success": True,
"message": f"Successfully renamed face to {body.new_name}.",
},
status_code=200,
)
except ValueError as e:
logger.error(e)
return JSONResponse(
status_code=400,
content={
"message": "Error renaming face. Check Frigate logs.",
"success": False,
},
)
@router.put("/lpr/reprocess")
def reprocess_license_plate(request: Request, event_id: str):
if not request.app.frigate_config.lpr.enabled:
message = "License plate recognition is not enabled."
logger.error(message)
return JSONResponse(
content=(
{
"success": False,
"message": message,
}
),
status_code=400,
)
try:
event = Event.get(Event.id == event_id)
except DoesNotExist:
message = f"Event {event_id} not found"
logger.error(message)
return JSONResponse(
content=({"success": False, "message": message}), status_code=404
)
context: EmbeddingsContext = request.app.embeddings
response = context.reprocess_plate(model_to_dict(event))
return JSONResponse(
content=response,
status_code=200,
)
@router.put("/reindex", dependencies=[Depends(require_role(["admin"]))])
def reindex_embeddings(request: Request):
if not request.app.frigate_config.semantic_search.enabled:
message = (
"Cannot reindex tracked object embeddings, Semantic Search is not enabled."
)
logger.error(message)
return JSONResponse(
content=(
{
"success": False,
"message": message,
}
),
status_code=400,
)
context: EmbeddingsContext = request.app.embeddings
response = context.reindex_embeddings()
if response == "started":
return JSONResponse(
content={
"success": True,
"message": "Embeddings reindexing has started.",
},
status_code=202, # 202 Accepted
)
elif response == "in_progress":
return JSONResponse(
content={
"success": False,
"message": "Embeddings reindexing is already in progress.",
},
status_code=409, # 409 Conflict
)
else:
return JSONResponse(
content={
"success": False,
"message": "Failed to start reindexing.",
},
status_code=500,
)