blakeblackshear.frigate/frigate/detectors/detector_utils.py
Jimmy ab7b12da54
Add Mesa Teflon as a TFLite detector (#18310)
* Refactor common functions for tflite detector implementations

* Add detector using mesa teflon delegate

Non-EdgeTPU TFLite can use the standard .tflite format

* Add mesa-teflon-delegate from bookworm-backports to arm64 images
2025-06-06 13:41:04 -06:00

75 lines
2.2 KiB
Python

import logging
import os
import numpy as np
try:
from tflite_runtime.interpreter import Interpreter, load_delegate
except ModuleNotFoundError:
from tensorflow.lite.python.interpreter import Interpreter, load_delegate
logger = logging.getLogger(__name__)
def tflite_init(self, interpreter):
self.interpreter = interpreter
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def tflite_detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
self.interpreter.invoke()
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
count = int(self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0])
detections = np.zeros((20, 6), np.float32)
for i in range(count):
if scores[i] < 0.4 or i == 20:
break
detections[i] = [
class_ids[i],
float(scores[i]),
boxes[i][0],
boxes[i][1],
boxes[i][2],
boxes[i][3],
]
return detections
def tflite_load_delegate_interpreter(
delegate_library: str, detector_config, device_config
):
try:
logger.info("Attempting to load NPU")
tf_delegate = load_delegate(delegate_library, device_config)
logger.info("NPU found")
interpreter = Interpreter(
model_path=detector_config.model.path,
experimental_delegates=[tf_delegate],
)
return interpreter
except ValueError:
_, ext = os.path.splitext(detector_config.model.path)
if ext and ext != ".tflite":
logger.error(
"Incorrect model used with NPU. Only .tflite models can be used with a TFLite delegate."
)
else:
logger.error(
"No NPU was detected. If you do not have a TFLite device yet, you must configure CPU detectors."
)
raise