mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-08-04 13:47:37 +02:00
* Refactor common functions for tflite detector implementations * Add detector using mesa teflon delegate Non-EdgeTPU TFLite can use the standard .tflite format * Add mesa-teflon-delegate from bookworm-backports to arm64 images
75 lines
2.2 KiB
Python
75 lines
2.2 KiB
Python
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
try:
|
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
|
except ModuleNotFoundError:
|
|
from tensorflow.lite.python.interpreter import Interpreter, load_delegate
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def tflite_init(self, interpreter):
|
|
self.interpreter = interpreter
|
|
|
|
self.interpreter.allocate_tensors()
|
|
|
|
self.tensor_input_details = self.interpreter.get_input_details()
|
|
self.tensor_output_details = self.interpreter.get_output_details()
|
|
|
|
|
|
def tflite_detect_raw(self, tensor_input):
|
|
self.interpreter.set_tensor(self.tensor_input_details[0]["index"], tensor_input)
|
|
self.interpreter.invoke()
|
|
|
|
boxes = self.interpreter.tensor(self.tensor_output_details[0]["index"])()[0]
|
|
class_ids = self.interpreter.tensor(self.tensor_output_details[1]["index"])()[0]
|
|
scores = self.interpreter.tensor(self.tensor_output_details[2]["index"])()[0]
|
|
count = int(self.interpreter.tensor(self.tensor_output_details[3]["index"])()[0])
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i in range(count):
|
|
if scores[i] < 0.4 or i == 20:
|
|
break
|
|
detections[i] = [
|
|
class_ids[i],
|
|
float(scores[i]),
|
|
boxes[i][0],
|
|
boxes[i][1],
|
|
boxes[i][2],
|
|
boxes[i][3],
|
|
]
|
|
|
|
return detections
|
|
|
|
|
|
def tflite_load_delegate_interpreter(
|
|
delegate_library: str, detector_config, device_config
|
|
):
|
|
try:
|
|
logger.info("Attempting to load NPU")
|
|
tf_delegate = load_delegate(delegate_library, device_config)
|
|
logger.info("NPU found")
|
|
interpreter = Interpreter(
|
|
model_path=detector_config.model.path,
|
|
experimental_delegates=[tf_delegate],
|
|
)
|
|
return interpreter
|
|
except ValueError:
|
|
_, ext = os.path.splitext(detector_config.model.path)
|
|
|
|
if ext and ext != ".tflite":
|
|
logger.error(
|
|
"Incorrect model used with NPU. Only .tflite models can be used with a TFLite delegate."
|
|
)
|
|
else:
|
|
logger.error(
|
|
"No NPU was detected. If you do not have a TFLite device yet, you must configure CPU detectors."
|
|
)
|
|
|
|
raise
|