blakeblackshear.frigate/frigate/config/camera/objects.py
Nicolas Mowen 52295fcac4
Migrate object genai configuration (#19437)
* Move genAI object to objects section

* Adjust config propogation behavior

* Refactor genai config usage

* Automatic migration

* Always start the embeddings process

* Always init embeddings

* Config fixes

* Adjust reference config

* Adjust docs

* Formatting

* Fix
2025-08-08 17:33:11 -05:00

132 lines
4.6 KiB
Python

from typing import Any, Optional, Union
from pydantic import Field, PrivateAttr, field_serializer, field_validator
from ..base import FrigateBaseModel
__all__ = ["ObjectConfig", "GenAIObjectConfig", "FilterConfig"]
DEFAULT_TRACKED_OBJECTS = ["person"]
class FilterConfig(FrigateBaseModel):
min_area: Union[int, float] = Field(
default=0,
title="Minimum area of bounding box for object to be counted. Can be pixels (int) or percentage (float between 0.000001 and 0.99).",
)
max_area: Union[int, float] = Field(
default=24000000,
title="Maximum area of bounding box for object to be counted. Can be pixels (int) or percentage (float between 0.000001 and 0.99).",
)
min_ratio: float = Field(
default=0,
title="Minimum ratio of bounding box's width/height for object to be counted.",
)
max_ratio: float = Field(
default=24000000,
title="Maximum ratio of bounding box's width/height for object to be counted.",
)
threshold: float = Field(
default=0.7,
title="Average detection confidence threshold for object to be counted.",
)
min_score: float = Field(
default=0.5, title="Minimum detection confidence for object to be counted."
)
mask: Optional[Union[str, list[str]]] = Field(
default=None,
title="Detection area polygon mask for this filter configuration.",
)
raw_mask: Union[str, list[str]] = ""
@field_serializer("mask", when_used="json")
def serialize_mask(self, value: Any, info):
return self.raw_mask
@field_serializer("raw_mask", when_used="json")
def serialize_raw_mask(self, value: Any, info):
return None
class GenAIObjectTriggerConfig(FrigateBaseModel):
tracked_object_end: bool = Field(
default=True, title="Send once the object is no longer tracked."
)
after_significant_updates: Optional[int] = Field(
default=None,
title="Send an early request to generative AI when X frames accumulated.",
ge=1,
)
class GenAIObjectConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable GenAI for camera.")
use_snapshot: bool = Field(
default=False, title="Use snapshots for generating descriptions."
)
prompt: str = Field(
default="Analyze the sequence of images containing the {label}. Focus on the likely intent or behavior of the {label} based on its actions and movement, rather than describing its appearance or the surroundings. Consider what the {label} is doing, why, and what it might do next.",
title="Default caption prompt.",
)
object_prompts: dict[str, str] = Field(
default_factory=dict, title="Object specific prompts."
)
objects: Union[str, list[str]] = Field(
default_factory=list,
title="List of objects to run generative AI for.",
)
required_zones: Union[str, list[str]] = Field(
default_factory=list,
title="List of required zones to be entered in order to run generative AI.",
)
debug_save_thumbnails: bool = Field(
default=False,
title="Save thumbnails sent to generative AI for debugging purposes.",
)
send_triggers: GenAIObjectTriggerConfig = Field(
default_factory=GenAIObjectTriggerConfig,
title="What triggers to use to send frames to generative AI for a tracked object.",
)
enabled_in_config: Optional[bool] = Field(
default=None, title="Keep track of original state of generative AI."
)
@field_validator("required_zones", mode="before")
@classmethod
def validate_required_zones(cls, v):
if isinstance(v, str) and "," not in v:
return [v]
return v
class ObjectConfig(FrigateBaseModel):
track: list[str] = Field(default=DEFAULT_TRACKED_OBJECTS, title="Objects to track.")
filters: dict[str, FilterConfig] = Field(
default_factory=dict, title="Object filters."
)
mask: Union[str, list[str]] = Field(default="", title="Object mask.")
genai: GenAIObjectConfig = Field(
default_factory=GenAIObjectConfig,
title="Config for using genai to analyze objects.",
)
_all_objects: list[str] = PrivateAttr()
@property
def all_objects(self) -> list[str]:
return self._all_objects
def parse_all_objects(self, cameras):
if "_all_objects" in self:
return
# get list of unique enabled labels for tracking
enabled_labels = set(self.track)
for camera in cameras.values():
enabled_labels.update(camera.objects.track)
self._all_objects = list(enabled_labels)