mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-05 17:51:36 +02:00
* Don't return weighted name if it has the same number of results * Remove link to incorrect format yolov9 models * Fix command list from appearing when other inputs are focused the description box in the tracked object details pane was causing the command input list to show when focused. * clarify face docs * Add note about python yolov9 export * Check if hailort thread is still alive when timeout error is run into * Reduce inference timeout --------- Co-authored-by: Josh Hawkins <32435876+hawkeye217@users.noreply.github.com>
419 lines
15 KiB
Python
Executable File
419 lines
15 KiB
Python
Executable File
import logging
|
|
import os
|
|
import subprocess
|
|
import threading
|
|
import urllib.request
|
|
from functools import partial
|
|
from typing import Dict, List, Optional, Tuple
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.const import MODEL_CACHE_DIR
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detector_config import (
|
|
BaseDetectorConfig,
|
|
)
|
|
from frigate.object_detection.util import RequestStore, ResponseStore
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
# ----------------- Utility Functions ----------------- #
|
|
|
|
|
|
def preprocess_tensor(image: np.ndarray, model_w: int, model_h: int) -> np.ndarray:
|
|
"""
|
|
Resize an image with unchanged aspect ratio using padding.
|
|
Assumes input image shape is (H, W, 3).
|
|
"""
|
|
if image.ndim == 4 and image.shape[0] == 1:
|
|
image = image[0]
|
|
|
|
h, w = image.shape[:2]
|
|
|
|
if (w, h) == (320, 320) and (model_w, model_h) == (640, 640):
|
|
return cv2.resize(image, (model_w, model_h), interpolation=cv2.INTER_LINEAR)
|
|
|
|
scale = min(model_w / w, model_h / h)
|
|
new_w, new_h = int(w * scale), int(h * scale)
|
|
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
|
|
padded_image = np.full((model_h, model_w, 3), 114, dtype=image.dtype)
|
|
x_offset = (model_w - new_w) // 2
|
|
y_offset = (model_h - new_h) // 2
|
|
padded_image[y_offset : y_offset + new_h, x_offset : x_offset + new_w] = (
|
|
resized_image
|
|
)
|
|
return padded_image
|
|
|
|
|
|
# ----------------- Global Constants ----------------- #
|
|
DETECTOR_KEY = "hailo8l"
|
|
ARCH = None
|
|
H8_DEFAULT_MODEL = "yolov6n.hef"
|
|
H8L_DEFAULT_MODEL = "yolov6n.hef"
|
|
H8_DEFAULT_URL = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8/yolov6n.hef"
|
|
H8L_DEFAULT_URL = "https://hailo-model-zoo.s3.eu-west-2.amazonaws.com/ModelZoo/Compiled/v2.14.0/hailo8l/yolov6n.hef"
|
|
|
|
|
|
def detect_hailo_arch():
|
|
try:
|
|
result = subprocess.run(
|
|
["hailortcli", "fw-control", "identify"], capture_output=True, text=True
|
|
)
|
|
if result.returncode != 0:
|
|
logger.error(f"Inference error: {result.stderr}")
|
|
return None
|
|
for line in result.stdout.split("\n"):
|
|
if "Device Architecture" in line:
|
|
if "HAILO8L" in line:
|
|
return "hailo8l"
|
|
elif "HAILO8" in line:
|
|
return "hailo8"
|
|
logger.error("Inference error: Could not determine Hailo architecture.")
|
|
return None
|
|
except Exception as e:
|
|
logger.error(f"Inference error: {e}")
|
|
return None
|
|
|
|
|
|
# ----------------- HailoAsyncInference Class ----------------- #
|
|
class HailoAsyncInference:
|
|
def __init__(
|
|
self,
|
|
hef_path: str,
|
|
input_store: RequestStore,
|
|
output_store: ResponseStore,
|
|
batch_size: int = 1,
|
|
input_type: Optional[str] = None,
|
|
output_type: Optional[Dict[str, str]] = None,
|
|
send_original_frame: bool = False,
|
|
) -> None:
|
|
# when importing hailo it activates the driver
|
|
# which leaves processes running even though it may not be used.
|
|
try:
|
|
from hailo_platform import (
|
|
HEF,
|
|
FormatType,
|
|
HailoSchedulingAlgorithm,
|
|
VDevice,
|
|
)
|
|
except ModuleNotFoundError:
|
|
pass
|
|
|
|
self.input_store = input_store
|
|
self.output_store = output_store
|
|
|
|
params = VDevice.create_params()
|
|
params.scheduling_algorithm = HailoSchedulingAlgorithm.ROUND_ROBIN
|
|
|
|
self.hef = HEF(hef_path)
|
|
self.target = VDevice(params)
|
|
self.infer_model = self.target.create_infer_model(hef_path)
|
|
self.infer_model.set_batch_size(batch_size)
|
|
|
|
if input_type is not None:
|
|
self.infer_model.input().set_format_type(getattr(FormatType, input_type))
|
|
|
|
if output_type is not None:
|
|
for output_name, output_type in output_type.items():
|
|
self.infer_model.output(output_name).set_format_type(
|
|
getattr(FormatType, output_type)
|
|
)
|
|
|
|
self.output_type = output_type
|
|
self.send_original_frame = send_original_frame
|
|
|
|
def callback(
|
|
self,
|
|
completion_info,
|
|
bindings_list: List,
|
|
input_batch: List,
|
|
request_ids: List[int],
|
|
):
|
|
if completion_info.exception:
|
|
logger.error(f"Inference error: {completion_info.exception}")
|
|
else:
|
|
for i, bindings in enumerate(bindings_list):
|
|
if len(bindings._output_names) == 1:
|
|
result = bindings.output().get_buffer()
|
|
else:
|
|
result = {
|
|
name: np.expand_dims(bindings.output(name).get_buffer(), axis=0)
|
|
for name in bindings._output_names
|
|
}
|
|
self.output_store.put(request_ids[i], (input_batch[i], result))
|
|
|
|
def _create_bindings(self, configured_infer_model) -> object:
|
|
if self.output_type is None:
|
|
output_buffers = {
|
|
output_info.name: np.empty(
|
|
self.infer_model.output(output_info.name).shape,
|
|
dtype=getattr(
|
|
np, str(output_info.format.type).split(".")[1].lower()
|
|
),
|
|
)
|
|
for output_info in self.hef.get_output_vstream_infos()
|
|
}
|
|
else:
|
|
output_buffers = {
|
|
name: np.empty(
|
|
self.infer_model.output(name).shape,
|
|
dtype=getattr(np, self.output_type[name].lower()),
|
|
)
|
|
for name in self.output_type
|
|
}
|
|
return configured_infer_model.create_bindings(output_buffers=output_buffers)
|
|
|
|
def get_input_shape(self) -> Tuple[int, ...]:
|
|
return self.hef.get_input_vstream_infos()[0].shape
|
|
|
|
def run(self) -> None:
|
|
job = None
|
|
with self.infer_model.configure() as configured_infer_model:
|
|
while True:
|
|
batch_data = self.input_store.get()
|
|
|
|
if batch_data is None:
|
|
break
|
|
|
|
request_id, frame_data = batch_data
|
|
preprocessed_batch = [frame_data]
|
|
request_ids = [request_id]
|
|
input_batch = preprocessed_batch # non-send_original_frame mode
|
|
|
|
bindings_list = []
|
|
for frame in preprocessed_batch:
|
|
bindings = self._create_bindings(configured_infer_model)
|
|
bindings.input().set_buffer(np.array(frame))
|
|
bindings_list.append(bindings)
|
|
configured_infer_model.wait_for_async_ready(timeout_ms=10000)
|
|
job = configured_infer_model.run_async(
|
|
bindings_list,
|
|
partial(
|
|
self.callback,
|
|
input_batch=input_batch,
|
|
request_ids=request_ids,
|
|
bindings_list=bindings_list,
|
|
),
|
|
)
|
|
|
|
if job is not None:
|
|
job.wait(100)
|
|
|
|
|
|
# ----------------- HailoDetector Class ----------------- #
|
|
class HailoDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: "HailoDetectorConfig"):
|
|
global ARCH
|
|
ARCH = detect_hailo_arch()
|
|
self.cache_dir = MODEL_CACHE_DIR
|
|
self.device_type = detector_config.device
|
|
self.model_height = (
|
|
detector_config.model.height
|
|
if hasattr(detector_config.model, "height")
|
|
else None
|
|
)
|
|
self.model_width = (
|
|
detector_config.model.width
|
|
if hasattr(detector_config.model, "width")
|
|
else None
|
|
)
|
|
self.model_type = (
|
|
detector_config.model.model_type
|
|
if hasattr(detector_config.model, "model_type")
|
|
else None
|
|
)
|
|
self.tensor_format = (
|
|
detector_config.model.input_tensor
|
|
if hasattr(detector_config.model, "input_tensor")
|
|
else None
|
|
)
|
|
self.pixel_format = (
|
|
detector_config.model.input_pixel_format
|
|
if hasattr(detector_config.model, "input_pixel_format")
|
|
else None
|
|
)
|
|
self.input_dtype = (
|
|
detector_config.model.input_dtype
|
|
if hasattr(detector_config.model, "input_dtype")
|
|
else None
|
|
)
|
|
self.output_type = "FLOAT32"
|
|
self.set_path_and_url(detector_config.model.path)
|
|
self.working_model_path = self.check_and_prepare()
|
|
|
|
self.batch_size = 1
|
|
self.input_store = RequestStore()
|
|
self.response_store = ResponseStore()
|
|
|
|
try:
|
|
logger.debug(f"[INIT] Loading HEF model from {self.working_model_path}")
|
|
self.inference_engine = HailoAsyncInference(
|
|
self.working_model_path,
|
|
self.input_store,
|
|
self.response_store,
|
|
self.batch_size,
|
|
)
|
|
self.input_shape = self.inference_engine.get_input_shape()
|
|
logger.debug(f"[INIT] Model input shape: {self.input_shape}")
|
|
self.inference_thread = threading.Thread(
|
|
target=self.inference_engine.run, daemon=True
|
|
)
|
|
self.inference_thread.start()
|
|
except Exception as e:
|
|
logger.error(f"[INIT] Failed to initialize HailoAsyncInference: {e}")
|
|
raise
|
|
|
|
def set_path_and_url(self, path: str = None):
|
|
if not path:
|
|
self.model_path = None
|
|
self.url = None
|
|
return
|
|
if self.is_url(path):
|
|
self.url = path
|
|
self.model_path = None
|
|
else:
|
|
self.model_path = path
|
|
self.url = None
|
|
|
|
def is_url(self, url: str) -> bool:
|
|
return (
|
|
url.startswith("http://")
|
|
or url.startswith("https://")
|
|
or url.startswith("www.")
|
|
)
|
|
|
|
@staticmethod
|
|
def extract_model_name(path: str = None, url: str = None) -> str:
|
|
if path and path.endswith(".hef"):
|
|
return os.path.basename(path)
|
|
elif url and url.endswith(".hef"):
|
|
return os.path.basename(url)
|
|
else:
|
|
if ARCH == "hailo8":
|
|
return H8_DEFAULT_MODEL
|
|
else:
|
|
return H8L_DEFAULT_MODEL
|
|
|
|
@staticmethod
|
|
def download_model(url: str, destination: str):
|
|
if not url.endswith(".hef"):
|
|
raise ValueError("Invalid model URL. Only .hef files are supported.")
|
|
try:
|
|
urllib.request.urlretrieve(url, destination)
|
|
logger.debug(f"Downloaded model to {destination}")
|
|
except Exception as e:
|
|
raise RuntimeError(f"Failed to download model from {url}: {str(e)}")
|
|
|
|
def check_and_prepare(self) -> str:
|
|
if not os.path.exists(self.cache_dir):
|
|
os.makedirs(self.cache_dir)
|
|
model_name = self.extract_model_name(self.model_path, self.url)
|
|
cached_model_path = os.path.join(self.cache_dir, model_name)
|
|
if not self.model_path and not self.url:
|
|
if os.path.exists(cached_model_path):
|
|
logger.debug(f"Model found in cache: {cached_model_path}")
|
|
return cached_model_path
|
|
else:
|
|
logger.debug(f"Downloading default model: {model_name}")
|
|
if ARCH == "hailo8":
|
|
self.download_model(H8_DEFAULT_URL, cached_model_path)
|
|
else:
|
|
self.download_model(H8L_DEFAULT_URL, cached_model_path)
|
|
elif self.url:
|
|
logger.debug(f"Downloading model from URL: {self.url}")
|
|
self.download_model(self.url, cached_model_path)
|
|
elif self.model_path:
|
|
if os.path.exists(self.model_path):
|
|
logger.debug(f"Using existing model at: {self.model_path}")
|
|
return self.model_path
|
|
else:
|
|
raise FileNotFoundError(f"Model file not found at: {self.model_path}")
|
|
return cached_model_path
|
|
|
|
def detect_raw(self, tensor_input):
|
|
tensor_input = self.preprocess(tensor_input)
|
|
|
|
if isinstance(tensor_input, np.ndarray) and len(tensor_input.shape) == 3:
|
|
tensor_input = np.expand_dims(tensor_input, axis=0)
|
|
|
|
request_id = self.input_store.put(tensor_input)
|
|
|
|
try:
|
|
_, infer_results = self.response_store.get(request_id, timeout=1.0)
|
|
except TimeoutError:
|
|
logger.error(
|
|
f"Timeout waiting for inference results for request {request_id}"
|
|
)
|
|
|
|
if not self.inference_thread.is_alive():
|
|
raise RuntimeError(
|
|
"HailoRT inference thread has stopped, restart required."
|
|
)
|
|
|
|
return np.zeros((20, 6), dtype=np.float32)
|
|
|
|
if isinstance(infer_results, list) and len(infer_results) == 1:
|
|
infer_results = infer_results[0]
|
|
|
|
threshold = 0.4
|
|
all_detections = []
|
|
for class_id, detection_set in enumerate(infer_results):
|
|
if not isinstance(detection_set, np.ndarray) or detection_set.size == 0:
|
|
continue
|
|
for det in detection_set:
|
|
if det.shape[0] < 5:
|
|
continue
|
|
score = float(det[4])
|
|
if score < threshold:
|
|
continue
|
|
all_detections.append([class_id, score, det[0], det[1], det[2], det[3]])
|
|
|
|
if len(all_detections) == 0:
|
|
detections_array = np.zeros((20, 6), dtype=np.float32)
|
|
else:
|
|
detections_array = np.array(all_detections, dtype=np.float32)
|
|
if detections_array.shape[0] > 20:
|
|
detections_array = detections_array[:20, :]
|
|
elif detections_array.shape[0] < 20:
|
|
pad = np.zeros((20 - detections_array.shape[0], 6), dtype=np.float32)
|
|
detections_array = np.vstack((detections_array, pad))
|
|
|
|
return detections_array
|
|
|
|
def preprocess(self, image):
|
|
if isinstance(image, np.ndarray):
|
|
processed = preprocess_tensor(
|
|
image, self.input_shape[1], self.input_shape[0]
|
|
)
|
|
return np.expand_dims(processed, axis=0)
|
|
else:
|
|
raise ValueError("Unsupported image format for preprocessing")
|
|
|
|
def close(self):
|
|
"""Properly shuts down the inference engine and releases the VDevice."""
|
|
logger.debug("[CLOSE] Closing HailoDetector")
|
|
try:
|
|
if hasattr(self, "inference_engine"):
|
|
if hasattr(self.inference_engine, "target"):
|
|
self.inference_engine.target.release()
|
|
logger.debug("Hailo VDevice released successfully")
|
|
except Exception as e:
|
|
logger.error(f"Failed to close Hailo device: {e}")
|
|
raise
|
|
|
|
def __del__(self):
|
|
"""Destructor to ensure cleanup when the object is deleted."""
|
|
self.close()
|
|
|
|
|
|
# ----------------- HailoDetectorConfig Class ----------------- #
|
|
class HailoDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: str = Field(default="PCIe", title="Device Type")
|