blakeblackshear.frigate/frigate/detectors/detection_runners.py
Nicolas Mowen 26178444f3
Fixes (#20102)
* Catch bird classification resize error

* Improve openvino width detection

* Use auto by default

* Set type
2025-09-16 16:06:51 -06:00

395 lines
14 KiB
Python

"""Base runner implementation for ONNX models."""
import logging
import os
from abc import ABC, abstractmethod
from typing import Any
import numpy as np
import onnxruntime as ort
from frigate.util.model import get_ort_providers
from frigate.util.rknn_converter import auto_convert_model, is_rknn_compatible
logger = logging.getLogger(__name__)
# Import OpenVINO only when needed to avoid circular dependencies
try:
import openvino as ov
except ImportError:
ov = None
def get_openvino_available_devices() -> list[str]:
"""Get available OpenVINO devices without using ONNX Runtime.
Returns:
List of available OpenVINO device names (e.g., ['CPU', 'GPU', 'MYRIAD'])
"""
if ov is None:
logger.debug("OpenVINO is not available")
return []
try:
core = ov.Core()
available_devices = core.available_devices
logger.debug(f"OpenVINO available devices: {available_devices}")
return available_devices
except Exception as e:
logger.warning(f"Failed to get OpenVINO available devices: {e}")
return []
def is_openvino_gpu_npu_available() -> bool:
"""Check if OpenVINO GPU or NPU devices are available.
Returns:
True if GPU or NPU devices are available, False otherwise
"""
available_devices = get_openvino_available_devices()
# Check for GPU, NPU, or other acceleration devices (excluding CPU)
acceleration_devices = ["GPU", "MYRIAD", "NPU", "GNA", "HDDL"]
return any(device in available_devices for device in acceleration_devices)
class BaseModelRunner(ABC):
"""Abstract base class for model runners."""
def __init__(self, model_path: str, device: str, **kwargs):
self.model_path = model_path
self.device = device
@abstractmethod
def get_input_names(self) -> list[str]:
"""Get input names for the model."""
pass
@abstractmethod
def get_input_width(self) -> int:
"""Get the input width of the model."""
pass
@abstractmethod
def run(self, input: dict[str, Any]) -> Any | None:
"""Run inference with the model."""
pass
class ONNXModelRunner(BaseModelRunner):
"""Run ONNX models using ONNX Runtime."""
def __init__(self, ort: ort.InferenceSession):
self.ort = ort
def get_input_names(self) -> list[str]:
return [input.name for input in self.ort.get_inputs()]
def get_input_width(self) -> int:
"""Get the input width of the model."""
return self.ort.get_inputs()[0].shape[3]
def run(self, input: dict[str, Any]) -> Any | None:
return self.ort.run(None, input)
class CudaGraphRunner(BaseModelRunner):
"""Encapsulates CUDA Graph capture and replay using ONNX Runtime IOBinding.
This runner assumes a single tensor input and binds all model outputs.
NOTE: CUDA Graphs limit supported model operations, so they are not usable
for more complex models like CLIP or PaddleOCR.
"""
def __init__(self, session: ort.InferenceSession, cuda_device_id: int):
self._session = session
self._cuda_device_id = cuda_device_id
self._captured = False
self._io_binding: ort.IOBinding | None = None
self._input_name: str | None = None
self._output_names: list[str] | None = None
self._input_ortvalue: ort.OrtValue | None = None
self._output_ortvalues: ort.OrtValue | None = None
def get_input_names(self) -> list[str]:
"""Get input names for the model."""
return [input.name for input in self._session.get_inputs()]
def get_input_width(self) -> int:
"""Get the input width of the model."""
return self._session.get_inputs()[0].shape[3]
def run(self, input: dict[str, Any]):
# Extract the single tensor input (assuming one input)
input_name = list(input.keys())[0]
tensor_input = input[input_name]
tensor_input = np.ascontiguousarray(tensor_input)
if not self._captured:
# Prepare IOBinding with CUDA buffers and let ORT allocate outputs on device
self._io_binding = self._session.io_binding()
self._input_name = input_name
self._output_names = [o.name for o in self._session.get_outputs()]
self._input_ortvalue = ort.OrtValue.ortvalue_from_numpy(
tensor_input, "cuda", self._cuda_device_id
)
self._io_binding.bind_ortvalue_input(self._input_name, self._input_ortvalue)
for name in self._output_names:
# Bind outputs to CUDA and allow ORT to allocate appropriately
self._io_binding.bind_output(name, "cuda", self._cuda_device_id)
# First IOBinding run to allocate, execute, and capture CUDA Graph
ro = ort.RunOptions()
self._session.run_with_iobinding(self._io_binding, ro)
self._captured = True
return self._io_binding.copy_outputs_to_cpu()
# Replay using updated input, copy results to CPU
self._input_ortvalue.update_inplace(tensor_input)
ro = ort.RunOptions()
self._session.run_with_iobinding(self._io_binding, ro)
return self._io_binding.copy_outputs_to_cpu()
class OpenVINOModelRunner(BaseModelRunner):
"""OpenVINO model runner that handles inference efficiently."""
def __init__(self, model_path: str, device: str, **kwargs):
self.model_path = model_path
self.device = device
if not os.path.isfile(model_path):
raise FileNotFoundError(f"OpenVINO model file {model_path} not found.")
if ov is None:
raise ImportError(
"OpenVINO is not available. Please install openvino package."
)
self.ov_core = ov.Core()
# Apply performance optimization
self.ov_core.set_property(device, {"PERF_COUNT": "NO"})
# Compile model
self.compiled_model = self.ov_core.compile_model(
model=model_path, device_name=device
)
# Create reusable inference request
self.infer_request = self.compiled_model.create_infer_request()
try:
input_shape = self.compiled_model.inputs[0].get_shape()
input_element_type = self.compiled_model.inputs[0].get_element_type()
self.input_tensor = ov.Tensor(input_element_type, input_shape)
except RuntimeError:
# model is complex and has dynamic shape
self.input_tensor = None
def get_input_names(self) -> list[str]:
"""Get input names for the model."""
return [input.get_any_name() for input in self.compiled_model.inputs]
def get_input_width(self) -> int:
"""Get the input width of the model."""
input_info = self.compiled_model.inputs
first_input = input_info[0]
try:
partial_shape = first_input.get_partial_shape()
# width dimension
if len(partial_shape) >= 4 and partial_shape[3].is_static:
return partial_shape[3].get_length()
# If width is dynamic or we can't determine it
return -1
except Exception:
try:
# gemini says some ov versions might still allow this
input_shape = first_input.shape
return input_shape[3] if len(input_shape) >= 4 else -1
except Exception:
return -1
def run(self, inputs: dict[str, Any]) -> list[np.ndarray]:
"""Run inference with the model.
Args:
inputs: Dictionary mapping input names to input data
Returns:
List of output tensors
"""
# Handle single input case for backward compatibility
if (
len(inputs) == 1
and len(self.compiled_model.inputs) == 1
and self.input_tensor is not None
):
# Single input case - use the pre-allocated tensor for efficiency
input_data = list(inputs.values())[0]
np.copyto(self.input_tensor.data, input_data)
self.infer_request.infer(self.input_tensor)
else:
# Multiple inputs case - set each input by name
for input_name, input_data in inputs.items():
# Find the input by name
input_port = None
for port in self.compiled_model.inputs:
if port.get_any_name() == input_name:
input_port = port
break
if input_port is None:
raise ValueError(f"Input '{input_name}' not found in model")
# Create tensor with the correct element type
input_element_type = input_port.get_element_type()
input_tensor = ov.Tensor(input_element_type, input_data.shape)
np.copyto(input_tensor.data, input_data)
# Set the input tensor
self.infer_request.set_input_tensor(input_tensor)
# Run inference
self.infer_request.infer()
# Get all output tensors
outputs = []
for i in range(len(self.compiled_model.outputs)):
outputs.append(self.infer_request.get_output_tensor(i).data)
return outputs
class RKNNModelRunner(BaseModelRunner):
"""Run RKNN models for embeddings."""
def __init__(self, model_path: str, model_type: str = None, core_mask: int = 0):
self.model_path = model_path
self.model_type = model_type
self.core_mask = core_mask
self.rknn = None
self._load_model()
def _load_model(self):
"""Load the RKNN model."""
try:
from rknnlite.api import RKNNLite
self.rknn = RKNNLite(verbose=False)
if self.rknn.load_rknn(self.model_path) != 0:
logger.error(f"Failed to load RKNN model: {self.model_path}")
raise RuntimeError("Failed to load RKNN model")
if self.rknn.init_runtime(core_mask=self.core_mask) != 0:
logger.error("Failed to initialize RKNN runtime")
raise RuntimeError("Failed to initialize RKNN runtime")
logger.info(f"Successfully loaded RKNN model: {self.model_path}")
except ImportError:
logger.error("RKNN Lite not available")
raise ImportError("RKNN Lite not available")
except Exception as e:
logger.error(f"Error loading RKNN model: {e}")
raise
def get_input_names(self) -> list[str]:
"""Get input names for the model."""
# For detection models, we typically use "input" as the default input name
# For CLIP models, we need to determine the model type from the path
model_name = os.path.basename(self.model_path).lower()
if "vision" in model_name:
return ["pixel_values"]
elif "arcface" in model_name:
return ["data"]
else:
# Default fallback - try to infer from model type
if self.model_type and "jina-clip" in self.model_type:
if "vision" in self.model_type:
return ["pixel_values"]
# Generic fallback
return ["input"]
def get_input_width(self) -> int:
"""Get the input width of the model."""
# For CLIP vision models, this is typically 224
model_name = os.path.basename(self.model_path).lower()
if "vision" in model_name:
return 224 # CLIP V1 uses 224x224
elif "arcface" in model_name:
return 112
# For detection models, we can't easily determine this from the RKNN model
# The calling code should provide this information
return -1
def run(self, inputs: dict[str, Any]) -> Any:
"""Run inference with the RKNN model."""
if not self.rknn:
raise RuntimeError("RKNN model not loaded")
try:
input_names = self.get_input_names()
rknn_inputs = []
for name in input_names:
if name in inputs:
if name == "pixel_values":
# RKNN expects NHWC format, but ONNX typically provides NCHW
# Transpose from [batch, channels, height, width] to [batch, height, width, channels]
pixel_data = inputs[name]
if len(pixel_data.shape) == 4 and pixel_data.shape[1] == 3:
# Transpose from NCHW to NHWC
pixel_data = np.transpose(pixel_data, (0, 2, 3, 1))
rknn_inputs.append(pixel_data)
else:
rknn_inputs.append(inputs[name])
outputs = self.rknn.inference(inputs=rknn_inputs)
return outputs
except Exception as e:
logger.error(f"Error during RKNN inference: {e}")
raise
def __del__(self):
"""Cleanup when the runner is destroyed."""
if self.rknn:
try:
self.rknn.release()
except Exception:
pass
def get_optimized_runner(
model_path: str, device: str | None, complex_model: bool = True, **kwargs
) -> BaseModelRunner:
"""Get an optimized runner for the hardware."""
if is_rknn_compatible(model_path):
rknn_path = auto_convert_model(model_path)
if rknn_path:
return RKNNModelRunner(rknn_path)
if device != "CPU" and is_openvino_gpu_npu_available():
return OpenVINOModelRunner(model_path, device or "AUTO", **kwargs)
providers, options = get_ort_providers(device == "CPU", device, **kwargs)
ortSession = ort.InferenceSession(
model_path,
providers=providers,
provider_options=options,
)
if not complex_model and providers[0] == "CUDAExecutionProvider":
return CudaGraphRunner(ortSession, options[0]["device_id"])
return ONNXModelRunner(ortSession)