mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-23 17:52:05 +02:00
* Cleanup onnx detector * Fix * Fix classification cropping * Deprioritize openvino * Send model type * Use model type to decide if model can use full optimization * Clenanup * Cleanup
106 lines
3.5 KiB
Python
106 lines
3.5 KiB
Python
import logging
|
|
|
|
import numpy as np
|
|
from pydantic import Field
|
|
from typing_extensions import Literal
|
|
|
|
from frigate.detectors.detection_api import DetectionApi
|
|
from frigate.detectors.detection_runners import get_optimized_runner
|
|
from frigate.detectors.detector_config import (
|
|
BaseDetectorConfig,
|
|
ModelTypeEnum,
|
|
)
|
|
from frigate.util.model import (
|
|
post_process_dfine,
|
|
post_process_rfdetr,
|
|
post_process_yolo,
|
|
post_process_yolox,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
DETECTOR_KEY = "onnx"
|
|
|
|
|
|
class ONNXDetectorConfig(BaseDetectorConfig):
|
|
type: Literal[DETECTOR_KEY]
|
|
device: str = Field(default="AUTO", title="Device Type")
|
|
|
|
|
|
class ONNXDetector(DetectionApi):
|
|
type_key = DETECTOR_KEY
|
|
|
|
def __init__(self, detector_config: ONNXDetectorConfig):
|
|
super().__init__(detector_config)
|
|
|
|
path = detector_config.model.path
|
|
logger.info(f"ONNX: loading {detector_config.model.path}")
|
|
|
|
self.runner = get_optimized_runner(
|
|
path,
|
|
detector_config.device,
|
|
model_type=detector_config.model.model_type,
|
|
)
|
|
|
|
self.onnx_model_type = detector_config.model.model_type
|
|
self.onnx_model_px = detector_config.model.input_pixel_format
|
|
self.onnx_model_shape = detector_config.model.input_tensor
|
|
|
|
if self.onnx_model_type == ModelTypeEnum.yolox:
|
|
self.calculate_grids_strides()
|
|
|
|
logger.info(f"ONNX: {path} loaded")
|
|
|
|
def detect_raw(self, tensor_input: np.ndarray):
|
|
if self.onnx_model_type == ModelTypeEnum.dfine:
|
|
tensor_output = self.runner.run(
|
|
{
|
|
"images": tensor_input,
|
|
"orig_target_sizes": np.array(
|
|
[[self.height, self.width]], dtype=np.int64
|
|
),
|
|
}
|
|
)
|
|
return post_process_dfine(tensor_output, self.width, self.height)
|
|
|
|
model_input_name = self.runner.get_input_names()[0]
|
|
tensor_output = self.runner.run({model_input_name: tensor_input})
|
|
|
|
if self.onnx_model_type == ModelTypeEnum.rfdetr:
|
|
return post_process_rfdetr(tensor_output)
|
|
elif self.onnx_model_type == ModelTypeEnum.yolonas:
|
|
predictions = tensor_output[0]
|
|
|
|
detections = np.zeros((20, 6), np.float32)
|
|
|
|
for i, prediction in enumerate(predictions):
|
|
if i == 20:
|
|
break
|
|
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
|
|
# when running in GPU mode, empty predictions in the output have class_id of -1
|
|
if class_id < 0:
|
|
break
|
|
detections[i] = [
|
|
class_id,
|
|
confidence,
|
|
y_min / self.height,
|
|
x_min / self.width,
|
|
y_max / self.height,
|
|
x_max / self.width,
|
|
]
|
|
return detections
|
|
elif self.onnx_model_type == ModelTypeEnum.yologeneric:
|
|
return post_process_yolo(tensor_output, self.width, self.height)
|
|
elif self.onnx_model_type == ModelTypeEnum.yolox:
|
|
return post_process_yolox(
|
|
tensor_output[0],
|
|
self.width,
|
|
self.height,
|
|
self.grids,
|
|
self.expanded_strides,
|
|
)
|
|
else:
|
|
raise Exception(
|
|
f"{self.onnx_model_type} is currently not supported for onnx. See the docs for more info on supported models."
|
|
)
|