blakeblackshear.frigate/frigate/detectors/plugins/onnx.py
Nicolas Mowen 68f806bb61
Cleanup onnx detector (#20128)
* Cleanup onnx detector

* Fix

* Fix classification cropping

* Deprioritize openvino

* Send model type

* Use model type to decide if model can use full optimization

* Clenanup

* Cleanup
2025-09-18 15:12:09 -06:00

106 lines
3.5 KiB
Python

import logging
import numpy as np
from pydantic import Field
from typing_extensions import Literal
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detection_runners import get_optimized_runner
from frigate.detectors.detector_config import (
BaseDetectorConfig,
ModelTypeEnum,
)
from frigate.util.model import (
post_process_dfine,
post_process_rfdetr,
post_process_yolo,
post_process_yolox,
)
logger = logging.getLogger(__name__)
DETECTOR_KEY = "onnx"
class ONNXDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default="AUTO", title="Device Type")
class ONNXDetector(DetectionApi):
type_key = DETECTOR_KEY
def __init__(self, detector_config: ONNXDetectorConfig):
super().__init__(detector_config)
path = detector_config.model.path
logger.info(f"ONNX: loading {detector_config.model.path}")
self.runner = get_optimized_runner(
path,
detector_config.device,
model_type=detector_config.model.model_type,
)
self.onnx_model_type = detector_config.model.model_type
self.onnx_model_px = detector_config.model.input_pixel_format
self.onnx_model_shape = detector_config.model.input_tensor
if self.onnx_model_type == ModelTypeEnum.yolox:
self.calculate_grids_strides()
logger.info(f"ONNX: {path} loaded")
def detect_raw(self, tensor_input: np.ndarray):
if self.onnx_model_type == ModelTypeEnum.dfine:
tensor_output = self.runner.run(
{
"images": tensor_input,
"orig_target_sizes": np.array(
[[self.height, self.width]], dtype=np.int64
),
}
)
return post_process_dfine(tensor_output, self.width, self.height)
model_input_name = self.runner.get_input_names()[0]
tensor_output = self.runner.run({model_input_name: tensor_input})
if self.onnx_model_type == ModelTypeEnum.rfdetr:
return post_process_rfdetr(tensor_output)
elif self.onnx_model_type == ModelTypeEnum.yolonas:
predictions = tensor_output[0]
detections = np.zeros((20, 6), np.float32)
for i, prediction in enumerate(predictions):
if i == 20:
break
(_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
# when running in GPU mode, empty predictions in the output have class_id of -1
if class_id < 0:
break
detections[i] = [
class_id,
confidence,
y_min / self.height,
x_min / self.width,
y_max / self.height,
x_max / self.width,
]
return detections
elif self.onnx_model_type == ModelTypeEnum.yologeneric:
return post_process_yolo(tensor_output, self.width, self.height)
elif self.onnx_model_type == ModelTypeEnum.yolox:
return post_process_yolox(
tensor_output[0],
self.width,
self.height,
self.grids,
self.expanded_strides,
)
else:
raise Exception(
f"{self.onnx_model_type} is currently not supported for onnx. See the docs for more info on supported models."
)