blakeblackshear.frigate/frigate/config.py
Nate Meyer e5fe323aca
Add OpenVino Detector (#3768)
* Initial work for adding OpenVino detector.  Not functional

* Load model and submit for inference.

Sucessfully load model and initialize OpenVino engine with either CPU or GPU as device.
Does not parse results for objects.

* Detection working with ssdlite_mobilenetv2 FP16 model

* Add OpenVIno support and model to docker image

* Add documentation for OpenVino detector configuration

* Adds support for ARM32/ARM64 and the Myriad X hardware

-  Use custom-built openvino wheel for all platforms
-  Add libusb build without udev for NCS2 support

* Add documentation around Intel CPU requirements and NCS2 setup

* Print all available output tensors

* Update documentation for config parameters
2022-12-03 10:19:34 -06:00

1037 lines
35 KiB
Python

from __future__ import annotations
import json
import logging
import os
from enum import Enum
from typing import Dict, List, Optional, Tuple, Union
import matplotlib.pyplot as plt
import numpy as np
import yaml
from pydantic import BaseModel, Extra, Field, validator
from pydantic.fields import PrivateAttr
from frigate.const import (
BASE_DIR,
CACHE_DIR,
REGEX_CAMERA_NAME,
YAML_EXT,
)
from frigate.util import (
create_mask,
deep_merge,
get_ffmpeg_arg_list,
escape_special_characters,
load_config_with_no_duplicates,
load_labels,
)
from frigate.ffmpeg_presets import (
parse_preset_hardware_acceleration,
parse_preset_input,
parse_preset_output_record,
parse_preset_output_rtmp,
)
from frigate.version import VERSION
logger = logging.getLogger(__name__)
# TODO: Identify what the default format to display timestamps is
DEFAULT_TIME_FORMAT = "%m/%d/%Y %H:%M:%S"
# German Style:
# DEFAULT_TIME_FORMAT = "%d.%m.%Y %H:%M:%S"
FRIGATE_ENV_VARS = {k: v for k, v in os.environ.items() if k.startswith("FRIGATE_")}
DEFAULT_TRACKED_OBJECTS = ["person"]
DEFAULT_DETECTORS = {"cpu": {"type": "cpu"}}
class FrigateBaseModel(BaseModel):
class Config:
extra = Extra.forbid
class DetectorTypeEnum(str, Enum):
edgetpu = "edgetpu"
openvino = "openvino"
cpu = "cpu"
class DetectorConfig(FrigateBaseModel):
type: DetectorTypeEnum = Field(default=DetectorTypeEnum.cpu, title="Detector Type")
device: str = Field(default="usb", title="Device Type")
num_threads: int = Field(default=3, title="Number of detection threads")
class UIConfig(FrigateBaseModel):
use_experimental: bool = Field(default=False, title="Experimental UI")
class MqttConfig(FrigateBaseModel):
enabled: bool = Field(title="Enable MQTT Communication.", default=True)
host: str = Field(title="MQTT Host")
port: int = Field(default=1883, title="MQTT Port")
topic_prefix: str = Field(default="frigate", title="MQTT Topic Prefix")
client_id: str = Field(default="frigate", title="MQTT Client ID")
stats_interval: int = Field(default=60, title="MQTT Camera Stats Interval")
user: Optional[str] = Field(title="MQTT Username")
password: Optional[str] = Field(title="MQTT Password")
tls_ca_certs: Optional[str] = Field(title="MQTT TLS CA Certificates")
tls_client_cert: Optional[str] = Field(title="MQTT TLS Client Certificate")
tls_client_key: Optional[str] = Field(title="MQTT TLS Client Key")
tls_insecure: Optional[bool] = Field(title="MQTT TLS Insecure")
@validator("password", pre=True, always=True)
def validate_password(cls, v, values):
if (v is None) != (values["user"] is None):
raise ValueError("Password must be provided with username.")
return v
class RetainModeEnum(str, Enum):
all = "all"
motion = "motion"
active_objects = "active_objects"
class RetainConfig(FrigateBaseModel):
default: float = Field(default=10, title="Default retention period.")
mode: RetainModeEnum = Field(default=RetainModeEnum.motion, title="Retain mode.")
objects: Dict[str, float] = Field(
default_factory=dict, title="Object retention period."
)
class EventsConfig(FrigateBaseModel):
pre_capture: int = Field(default=5, title="Seconds to retain before event starts.")
post_capture: int = Field(default=5, title="Seconds to retain after event ends.")
required_zones: List[str] = Field(
default_factory=list,
title="List of required zones to be entered in order to save the event.",
)
objects: Optional[List[str]] = Field(
title="List of objects to be detected in order to save the event.",
)
retain: RetainConfig = Field(
default_factory=RetainConfig, title="Event retention settings."
)
class RecordRetainConfig(FrigateBaseModel):
days: float = Field(default=0, title="Default retention period.")
mode: RetainModeEnum = Field(default=RetainModeEnum.all, title="Retain mode.")
class RecordConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable record on all cameras.")
expire_interval: int = Field(
default=60,
title="Number of minutes to wait between cleanup runs.",
)
# deprecated - to be removed in a future version
retain_days: Optional[float] = Field(title="Recording retention period in days.")
retain: RecordRetainConfig = Field(
default_factory=RecordRetainConfig, title="Record retention settings."
)
events: EventsConfig = Field(
default_factory=EventsConfig, title="Event specific settings."
)
class MotionConfig(FrigateBaseModel):
threshold: int = Field(
default=25,
title="Motion detection threshold (1-255).",
ge=1,
le=255,
)
improve_contrast: bool = Field(default=False, title="Improve Contrast")
contour_area: Optional[int] = Field(default=30, title="Contour Area")
delta_alpha: float = Field(default=0.2, title="Delta Alpha")
frame_alpha: float = Field(default=0.2, title="Frame Alpha")
frame_height: Optional[int] = Field(default=50, title="Frame Height")
mask: Union[str, List[str]] = Field(
default="", title="Coordinates polygon for the motion mask."
)
mqtt_off_delay: int = Field(
default=30,
title="Delay for updating MQTT with no motion detected.",
)
class RuntimeMotionConfig(MotionConfig):
raw_mask: Union[str, List[str]] = ""
mask: np.ndarray = None
def __init__(self, **config):
frame_shape = config.get("frame_shape", (1, 1))
mask = config.get("mask", "")
config["raw_mask"] = mask
if mask:
config["mask"] = create_mask(frame_shape, mask)
else:
empty_mask = np.zeros(frame_shape, np.uint8)
empty_mask[:] = 255
config["mask"] = empty_mask
super().__init__(**config)
def dict(self, **kwargs):
ret = super().dict(**kwargs)
if "mask" in ret:
ret["mask"] = ret["raw_mask"]
ret.pop("raw_mask")
return ret
class Config:
arbitrary_types_allowed = True
extra = Extra.ignore
class StationaryMaxFramesConfig(FrigateBaseModel):
default: Optional[int] = Field(title="Default max frames.", ge=1)
objects: Dict[str, int] = Field(
default_factory=dict, title="Object specific max frames."
)
class StationaryConfig(FrigateBaseModel):
interval: Optional[int] = Field(
default=0,
title="Frame interval for checking stationary objects.",
ge=0,
)
threshold: Optional[int] = Field(
title="Number of frames without a position change for an object to be considered stationary",
ge=1,
)
max_frames: StationaryMaxFramesConfig = Field(
default_factory=StationaryMaxFramesConfig,
title="Max frames for stationary objects.",
)
class DetectConfig(FrigateBaseModel):
height: int = Field(default=720, title="Height of the stream for the detect role.")
width: int = Field(default=1280, title="Width of the stream for the detect role.")
fps: int = Field(
default=5, title="Number of frames per second to process through detection."
)
enabled: bool = Field(default=True, title="Detection Enabled.")
max_disappeared: Optional[int] = Field(
title="Maximum number of frames the object can dissapear before detection ends."
)
stationary: StationaryConfig = Field(
default_factory=StationaryConfig,
title="Stationary objects config.",
)
class FilterConfig(FrigateBaseModel):
min_area: int = Field(
default=0, title="Minimum area of bounding box for object to be counted."
)
max_area: int = Field(
default=24000000, title="Maximum area of bounding box for object to be counted."
)
min_ratio: float = Field(
default=0,
title="Minimum ratio of bounding box's width/height for object to be counted.",
)
max_ratio: float = Field(
default=24000000,
title="Maximum ratio of bounding box's width/height for object to be counted.",
)
threshold: float = Field(
default=0.7,
title="Average detection confidence threshold for object to be counted.",
)
min_score: float = Field(
default=0.5, title="Minimum detection confidence for object to be counted."
)
mask: Optional[Union[str, List[str]]] = Field(
title="Detection area polygon mask for this filter configuration.",
)
class RuntimeFilterConfig(FilterConfig):
mask: Optional[np.ndarray]
raw_mask: Optional[Union[str, List[str]]]
def __init__(self, **config):
mask = config.get("mask")
config["raw_mask"] = mask
if mask is not None:
config["mask"] = create_mask(config.get("frame_shape", (1, 1)), mask)
super().__init__(**config)
def dict(self, **kwargs):
ret = super().dict(**kwargs)
if "mask" in ret:
ret["mask"] = ret["raw_mask"]
ret.pop("raw_mask")
return ret
class Config:
arbitrary_types_allowed = True
extra = Extra.ignore
# this uses the base model because the color is an extra attribute
class ZoneConfig(BaseModel):
filters: Dict[str, FilterConfig] = Field(
default_factory=dict, title="Zone filters."
)
coordinates: Union[str, List[str]] = Field(
title="Coordinates polygon for the defined zone."
)
objects: List[str] = Field(
default_factory=list,
title="List of objects that can trigger the zone.",
)
_color: Optional[Tuple[int, int, int]] = PrivateAttr()
_contour: np.ndarray = PrivateAttr()
@property
def color(self) -> Tuple[int, int, int]:
return self._color
@property
def contour(self) -> np.ndarray:
return self._contour
def __init__(self, **config):
super().__init__(**config)
self._color = config.get("color", (0, 0, 0))
coordinates = config["coordinates"]
if isinstance(coordinates, list):
self._contour = np.array(
[[int(p.split(",")[0]), int(p.split(",")[1])] for p in coordinates]
)
elif isinstance(coordinates, str):
points = coordinates.split(",")
self._contour = np.array(
[[int(points[i]), int(points[i + 1])] for i in range(0, len(points), 2)]
)
else:
self._contour = np.array([])
class ObjectConfig(FrigateBaseModel):
track: List[str] = Field(default=DEFAULT_TRACKED_OBJECTS, title="Objects to track.")
filters: Optional[Dict[str, FilterConfig]] = Field(title="Object filters.")
mask: Union[str, List[str]] = Field(default="", title="Object mask.")
class BirdseyeModeEnum(str, Enum):
objects = "objects"
motion = "motion"
continuous = "continuous"
class BirdseyeConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Enable birdseye view.")
width: int = Field(default=1280, title="Birdseye width.")
height: int = Field(default=720, title="Birdseye height.")
quality: int = Field(
default=8,
title="Encoding quality.",
ge=1,
le=31,
)
mode: BirdseyeModeEnum = Field(
default=BirdseyeModeEnum.objects, title="Tracking mode."
)
# uses BaseModel because some global attributes are not available at the camera level
class BirdseyeCameraConfig(BaseModel):
enabled: bool = Field(default=True, title="Enable birdseye view for camera.")
mode: BirdseyeModeEnum = Field(
default=BirdseyeModeEnum.objects, title="Tracking mode for camera."
)
FFMPEG_GLOBAL_ARGS_DEFAULT = [
"-hide_banner",
"-loglevel",
"warning",
"-user_agent",
f"FFmpeg Frigate/{VERSION}",
]
FFMPEG_INPUT_ARGS_DEFAULT = [
"-avoid_negative_ts",
"make_zero",
"-fflags",
"+genpts+discardcorrupt",
"-rtsp_transport",
"tcp",
"-timeout",
"5000000",
"-use_wallclock_as_timestamps",
"1",
]
DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-f", "rawvideo", "-pix_fmt", "yuv420p"]
RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-c", "copy", "-f", "flv"]
RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT = [
"-f",
"segment",
"-segment_time",
"10",
"-segment_format",
"mp4",
"-reset_timestamps",
"1",
"-strftime",
"1",
"-c",
"copy",
"-an",
]
class FfmpegOutputArgsConfig(FrigateBaseModel):
detect: Union[str, List[str]] = Field(
default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT,
title="Detect role FFmpeg output arguments.",
)
record: Union[str, List[str]] = Field(
default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT,
title="Record role FFmpeg output arguments.",
)
rtmp: Union[str, List[str]] = Field(
default=RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT,
title="RTMP role FFmpeg output arguments.",
)
class FfmpegConfig(FrigateBaseModel):
global_args: Union[str, List[str]] = Field(
default=FFMPEG_GLOBAL_ARGS_DEFAULT, title="Global FFmpeg arguments."
)
hwaccel_args: Union[str, List[str]] = Field(
default_factory=list, title="FFmpeg hardware acceleration arguments."
)
input_args: Union[str, List[str]] = Field(
default=FFMPEG_INPUT_ARGS_DEFAULT, title="FFmpeg input arguments."
)
output_args: FfmpegOutputArgsConfig = Field(
default_factory=FfmpegOutputArgsConfig,
title="FFmpeg output arguments per role.",
)
class CameraRoleEnum(str, Enum):
record = "record"
restream = "restream"
rtmp = "rtmp"
detect = "detect"
class CameraInput(FrigateBaseModel):
path: str = Field(title="Camera input path.")
roles: List[CameraRoleEnum] = Field(title="Roles assigned to this input.")
global_args: Union[str, List[str]] = Field(
default_factory=list, title="FFmpeg global arguments."
)
hwaccel_args: Union[str, List[str]] = Field(
default_factory=list, title="FFmpeg hardware acceleration arguments."
)
input_args: Union[str, List[str]] = Field(
default_factory=list, title="FFmpeg input arguments."
)
class CameraFfmpegConfig(FfmpegConfig):
inputs: List[CameraInput] = Field(title="Camera inputs.")
@validator("inputs")
def validate_roles(cls, v):
roles = [role for i in v for role in i.roles]
roles_set = set(roles)
if len(roles) > len(roles_set):
raise ValueError("Each input role may only be used once.")
if not "detect" in roles:
raise ValueError("The detect role is required.")
return v
class SnapshotsConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Snapshots enabled.")
clean_copy: bool = Field(
default=True, title="Create a clean copy of the snapshot image."
)
timestamp: bool = Field(
default=False, title="Add a timestamp overlay on the snapshot."
)
bounding_box: bool = Field(
default=True, title="Add a bounding box overlay on the snapshot."
)
crop: bool = Field(default=False, title="Crop the snapshot to the detected object.")
required_zones: List[str] = Field(
default_factory=list,
title="List of required zones to be entered in order to save a snapshot.",
)
height: Optional[int] = Field(title="Snapshot image height.")
retain: RetainConfig = Field(
default_factory=RetainConfig, title="Snapshot retention."
)
quality: int = Field(
default=70,
title="Quality of the encoded jpeg (0-100).",
ge=0,
le=100,
)
class ColorConfig(FrigateBaseModel):
red: int = Field(default=255, ge=0, le=255, title="Red")
green: int = Field(default=255, ge=0, le=255, title="Green")
blue: int = Field(default=255, ge=0, le=255, title="Blue")
class TimestampPositionEnum(str, Enum):
tl = "tl"
tr = "tr"
bl = "bl"
br = "br"
class TimestampEffectEnum(str, Enum):
solid = "solid"
shadow = "shadow"
class TimestampStyleConfig(FrigateBaseModel):
position: TimestampPositionEnum = Field(
default=TimestampPositionEnum.tl, title="Timestamp position."
)
format: str = Field(default=DEFAULT_TIME_FORMAT, title="Timestamp format.")
color: ColorConfig = Field(default_factory=ColorConfig, title="Timestamp color.")
thickness: int = Field(default=2, title="Timestamp thickness.")
effect: Optional[TimestampEffectEnum] = Field(title="Timestamp effect.")
class CameraMqttConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Send image over MQTT.")
timestamp: bool = Field(default=True, title="Add timestamp to MQTT image.")
bounding_box: bool = Field(default=True, title="Add bounding box to MQTT image.")
crop: bool = Field(default=True, title="Crop MQTT image to detected object.")
height: int = Field(default=270, title="MQTT image height.")
required_zones: List[str] = Field(
default_factory=list,
title="List of required zones to be entered in order to send the image.",
)
quality: int = Field(
default=70,
title="Quality of the encoded jpeg (0-100).",
ge=0,
le=100,
)
class RtmpConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="RTMP restreaming enabled.")
class JsmpegStreamConfig(FrigateBaseModel):
height: int = Field(default=720, title="Live camera view height.")
quality: int = Field(default=8, ge=1, le=31, title="Live camera view quality.")
class RestreamConfig(FrigateBaseModel):
enabled: bool = Field(default=True, title="Restreaming enabled.")
force_audio: bool = Field(
default=True, title="Force audio compatibility with the browser."
)
jsmpeg: JsmpegStreamConfig = Field(
default_factory=JsmpegStreamConfig, title="Jsmpeg Stream Configuration."
)
class CameraUiConfig(FrigateBaseModel):
order: int = Field(default=0, title="Order of camera in UI.")
dashboard: bool = Field(
default=True, title="Show this camera in Frigate dashboard UI."
)
class CameraConfig(FrigateBaseModel):
name: Optional[str] = Field(title="Camera name.", regex=REGEX_CAMERA_NAME)
enabled: bool = Field(default=True, title="Enable camera.")
ffmpeg: CameraFfmpegConfig = Field(title="FFmpeg configuration for the camera.")
best_image_timeout: int = Field(
default=60,
title="How long to wait for the image with the highest confidence score.",
)
zones: Dict[str, ZoneConfig] = Field(
default_factory=dict, title="Zone configuration."
)
record: RecordConfig = Field(
default_factory=RecordConfig, title="Record configuration."
)
rtmp: RtmpConfig = Field(
default_factory=RtmpConfig, title="RTMP restreaming configuration."
)
restream: RestreamConfig = Field(
default_factory=RestreamConfig, title="Restreaming configuration."
)
snapshots: SnapshotsConfig = Field(
default_factory=SnapshotsConfig, title="Snapshot configuration."
)
mqtt: CameraMqttConfig = Field(
default_factory=CameraMqttConfig, title="MQTT configuration."
)
objects: ObjectConfig = Field(
default_factory=ObjectConfig, title="Object configuration."
)
motion: Optional[MotionConfig] = Field(title="Motion detection configuration.")
detect: DetectConfig = Field(
default_factory=DetectConfig, title="Object detection configuration."
)
ui: CameraUiConfig = Field(
default_factory=CameraUiConfig, title="Camera UI Modifications."
)
birdseye: BirdseyeCameraConfig = Field(
default_factory=BirdseyeCameraConfig, title="Birdseye camera configuration."
)
timestamp_style: TimestampStyleConfig = Field(
default_factory=TimestampStyleConfig, title="Timestamp style configuration."
)
_ffmpeg_cmds: List[Dict[str, List[str]]] = PrivateAttr()
def __init__(self, **config):
# Set zone colors
if "zones" in config:
colors = plt.cm.get_cmap("tab10", len(config["zones"]))
config["zones"] = {
name: {**z, "color": tuple(round(255 * c) for c in colors(idx)[:3])}
for idx, (name, z) in enumerate(config["zones"].items())
}
# add roles to the input if there is only one
if len(config["ffmpeg"]["inputs"]) == 1:
has_rtmp = "rtmp" in config["ffmpeg"]["inputs"][0].get("roles", [])
config["ffmpeg"]["inputs"][0]["roles"] = [
"record",
"detect",
"restream",
]
if has_rtmp:
config["ffmpeg"]["inputs"][0]["roles"].append("rtmp")
super().__init__(**config)
@property
def frame_shape(self) -> Tuple[int, int]:
return self.detect.height, self.detect.width
@property
def frame_shape_yuv(self) -> Tuple[int, int]:
return self.detect.height * 3 // 2, self.detect.width
@property
def ffmpeg_cmds(self) -> List[Dict[str, List[str]]]:
return self._ffmpeg_cmds
def create_ffmpeg_cmds(self):
if "_ffmpeg_cmds" in self:
return
ffmpeg_cmds = []
for ffmpeg_input in self.ffmpeg.inputs:
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
if ffmpeg_cmd is None:
continue
ffmpeg_cmds.append({"roles": ffmpeg_input.roles, "cmd": ffmpeg_cmd})
self._ffmpeg_cmds = ffmpeg_cmds
def _get_ffmpeg_cmd(self, ffmpeg_input: CameraInput):
ffmpeg_output_args = []
if "detect" in ffmpeg_input.roles:
detect_args = get_ffmpeg_arg_list(self.ffmpeg.output_args.detect)
ffmpeg_output_args = (
[
"-r",
str(self.detect.fps),
"-s",
f"{self.detect.width}x{self.detect.height}",
]
+ detect_args
+ ffmpeg_output_args
+ ["pipe:"]
)
if "rtmp" in ffmpeg_input.roles and self.rtmp.enabled:
rtmp_args = get_ffmpeg_arg_list(
parse_preset_output_rtmp(self.ffmpeg.output_args.rtmp)
or self.ffmpeg.output_args.rtmp
)
ffmpeg_output_args = (
rtmp_args + [f"rtmp://127.0.0.1/live/{self.name}"] + ffmpeg_output_args
)
if "record" in ffmpeg_input.roles and self.record.enabled:
record_args = get_ffmpeg_arg_list(
parse_preset_output_record(self.ffmpeg.output_args.record)
or self.ffmpeg.output_args.record
)
ffmpeg_output_args = (
record_args
+ [f"{os.path.join(CACHE_DIR, self.name)}-%Y%m%d%H%M%S.mp4"]
+ ffmpeg_output_args
)
# if there arent any outputs enabled for this input
if len(ffmpeg_output_args) == 0:
return None
global_args = get_ffmpeg_arg_list(
ffmpeg_input.global_args or self.ffmpeg.global_args
)
hwaccel_args = get_ffmpeg_arg_list(
ffmpeg_input.hwaccel_args
or parse_preset_hardware_acceleration(self.ffmpeg.hwaccel_args)
or self.ffmpeg.hwaccel_args
)
input_args = get_ffmpeg_arg_list(
ffmpeg_input.input_args
or parse_preset_input(self.ffmpeg.input_args, self.detect.fps)
or self.ffmpeg.input_args
)
cmd = (
["ffmpeg"]
+ global_args
+ hwaccel_args
+ input_args
+ ["-i", escape_special_characters(ffmpeg_input.path)]
+ ffmpeg_output_args
)
return [part for part in cmd if part != ""]
class DatabaseConfig(FrigateBaseModel):
path: str = Field(
default=os.path.join(BASE_DIR, "frigate.db"), title="Database path."
)
class PixelFormatEnum(str, Enum):
rgb = "rgb"
bgr = "bgr"
yuv = "yuv"
class InputTensorEnum(str, Enum):
nchw = "nchw"
nhwc = "nhwc"
class ModelConfig(FrigateBaseModel):
path: Optional[str] = Field(title="Custom Object detection model path.")
labelmap_path: Optional[str] = Field(title="Label map for custom object detector.")
width: int = Field(default=320, title="Object detection model input width.")
height: int = Field(default=320, title="Object detection model input height.")
labelmap: Dict[int, str] = Field(
default_factory=dict, title="Labelmap customization."
)
input_tensor: InputTensorEnum = Field(
default=InputTensorEnum.nhwc, title="Model Input Tensor Shape"
)
input_pixel_format: PixelFormatEnum = Field(
default=PixelFormatEnum.rgb, title="Model Input Pixel Color Format"
)
_merged_labelmap: Optional[Dict[int, str]] = PrivateAttr()
_colormap: Dict[int, Tuple[int, int, int]] = PrivateAttr()
@property
def merged_labelmap(self) -> Dict[int, str]:
return self._merged_labelmap
@property
def colormap(self) -> Dict[int, Tuple[int, int, int]]:
return self._colormap
def __init__(self, **config):
super().__init__(**config)
self._merged_labelmap = {
**load_labels(config.get("labelmap_path", "/labelmap.txt")),
**config.get("labelmap", {}),
}
cmap = plt.cm.get_cmap("tab10", len(self._merged_labelmap.keys()))
self._colormap = {}
for key, val in self._merged_labelmap.items():
self._colormap[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
class LogLevelEnum(str, Enum):
debug = "debug"
info = "info"
warning = "warning"
error = "error"
critical = "critical"
class LoggerConfig(FrigateBaseModel):
default: LogLevelEnum = Field(
default=LogLevelEnum.info, title="Default logging level."
)
logs: Dict[str, LogLevelEnum] = Field(
default_factory=dict, title="Log level for specified processes."
)
def verify_config_roles(camera_config: CameraConfig) -> None:
"""Verify that roles are setup in the config correctly."""
assigned_roles = list(
set([r for i in camera_config.ffmpeg.inputs for r in i.roles])
)
if camera_config.record.enabled and not "record" in assigned_roles:
raise ValueError(
f"Camera {camera_config.name} has record enabled, but record is not assigned to an input."
)
if camera_config.rtmp.enabled and not "rtmp" in assigned_roles:
raise ValueError(
f"Camera {camera_config.name} has rtmp enabled, but rtmp is not assigned to an input."
)
if camera_config.restream.enabled and not "restream" in assigned_roles:
raise ValueError(
f"Camera {camera_config.name} has restream enabled, but restream is not assigned to an input."
)
def verify_old_retain_config(camera_config: CameraConfig) -> None:
"""Leave log if old retain_days is used."""
if not camera_config.record.retain_days is None:
logger.warning(
"The 'retain_days' config option has been DEPRECATED and will be removed in a future version. Please use the 'days' setting under 'retain'"
)
if camera_config.record.retain.days == 0:
camera_config.record.retain.days = camera_config.record.retain_days
def verify_recording_retention(camera_config: CameraConfig) -> None:
"""Verify that recording retention modes are ranked correctly."""
rank_map = {
RetainModeEnum.all: 0,
RetainModeEnum.motion: 1,
RetainModeEnum.active_objects: 2,
}
if (
camera_config.record.retain.days != 0
and rank_map[camera_config.record.retain.mode]
> rank_map[camera_config.record.events.retain.mode]
):
logger.warning(
f"{camera_config.name}: Recording retention is configured for {camera_config.record.retain.mode} and event retention is configured for {camera_config.record.events.retain.mode}. The more restrictive retention policy will be applied."
)
def verify_zone_objects_are_tracked(camera_config: CameraConfig) -> None:
"""Verify that user has not entered zone objects that are not in the tracking config."""
for zone_name, zone in camera_config.zones.items():
for obj in zone.objects:
if obj not in camera_config.objects.track:
raise ValueError(
f"Zone {zone_name} is configured to track {obj} but that object type is not added to objects -> track."
)
class FrigateConfig(FrigateBaseModel):
mqtt: MqttConfig = Field(title="MQTT Configuration.")
database: DatabaseConfig = Field(
default_factory=DatabaseConfig, title="Database configuration."
)
environment_vars: Dict[str, str] = Field(
default_factory=dict, title="Frigate environment variables."
)
ui: UIConfig = Field(default_factory=UIConfig, title="UI configuration.")
model: ModelConfig = Field(
default_factory=ModelConfig, title="Detection model configuration."
)
detectors: Dict[str, DetectorConfig] = Field(
default={name: DetectorConfig(**d) for name, d in DEFAULT_DETECTORS.items()},
title="Detector hardware configuration.",
)
logger: LoggerConfig = Field(
default_factory=LoggerConfig, title="Logging configuration."
)
record: RecordConfig = Field(
default_factory=RecordConfig, title="Global record configuration."
)
snapshots: SnapshotsConfig = Field(
default_factory=SnapshotsConfig, title="Global snapshots configuration."
)
rtmp: RtmpConfig = Field(
default_factory=RtmpConfig, title="Global RTMP restreaming configuration."
)
restream: RestreamConfig = Field(
default_factory=RestreamConfig, title="Global restream configuration."
)
birdseye: BirdseyeConfig = Field(
default_factory=BirdseyeConfig, title="Birdseye configuration."
)
ffmpeg: FfmpegConfig = Field(
default_factory=FfmpegConfig, title="Global FFmpeg configuration."
)
objects: ObjectConfig = Field(
default_factory=ObjectConfig, title="Global object configuration."
)
motion: Optional[MotionConfig] = Field(
title="Global motion detection configuration."
)
detect: DetectConfig = Field(
default_factory=DetectConfig, title="Global object tracking configuration."
)
cameras: Dict[str, CameraConfig] = Field(title="Camera configuration.")
timestamp_style: TimestampStyleConfig = Field(
default_factory=TimestampStyleConfig,
title="Global timestamp style configuration.",
)
@property
def runtime_config(self) -> FrigateConfig:
"""Merge camera config with globals."""
config = self.copy(deep=True)
# MQTT password substitution
if config.mqtt.password:
config.mqtt.password = config.mqtt.password.format(**FRIGATE_ENV_VARS)
# Global config to propagate down to camera level
global_config = config.dict(
include={
"birdseye": ...,
"record": ...,
"snapshots": ...,
"rtmp": ...,
"restream": ...,
"objects": ...,
"motion": ...,
"detect": ...,
"ffmpeg": ...,
"timestamp_style": ...,
},
exclude_unset=True,
)
for name, camera in config.cameras.items():
merged_config = deep_merge(camera.dict(exclude_unset=True), global_config)
camera_config: CameraConfig = CameraConfig.parse_obj(
{"name": name, **merged_config}
)
# Default max_disappeared configuration
max_disappeared = camera_config.detect.fps * 5
if camera_config.detect.max_disappeared is None:
camera_config.detect.max_disappeared = max_disappeared
# Default stationary_threshold configuration
stationary_threshold = camera_config.detect.fps * 10
if camera_config.detect.stationary.threshold is None:
camera_config.detect.stationary.threshold = stationary_threshold
# FFMPEG input substitution
for input in camera_config.ffmpeg.inputs:
input.path = input.path.format(**FRIGATE_ENV_VARS)
# Add default filters
object_keys = camera_config.objects.track
if camera_config.objects.filters is None:
camera_config.objects.filters = {}
object_keys = object_keys - camera_config.objects.filters.keys()
for key in object_keys:
camera_config.objects.filters[key] = FilterConfig()
# Apply global object masks and convert masks to numpy array
for object, filter in camera_config.objects.filters.items():
if camera_config.objects.mask:
filter_mask = []
if filter.mask is not None:
filter_mask = (
filter.mask
if isinstance(filter.mask, list)
else [filter.mask]
)
object_mask = (
camera_config.objects.mask
if isinstance(camera_config.objects.mask, list)
else [camera_config.objects.mask]
)
filter.mask = filter_mask + object_mask
# Set runtime filter to create masks
camera_config.objects.filters[object] = RuntimeFilterConfig(
frame_shape=camera_config.frame_shape,
**filter.dict(exclude_unset=True),
)
# Convert motion configuration
if camera_config.motion is None:
camera_config.motion = RuntimeMotionConfig(
frame_shape=camera_config.frame_shape
)
else:
camera_config.motion = RuntimeMotionConfig(
frame_shape=camera_config.frame_shape,
raw_mask=camera_config.motion.mask,
**camera_config.motion.dict(exclude_unset=True),
)
verify_config_roles(camera_config)
verify_old_retain_config(camera_config)
verify_recording_retention(camera_config)
verify_zone_objects_are_tracked(camera_config)
if camera_config.rtmp.enabled:
logger.warning(
"RTMP restream is deprecated in favor of the restream role, recommend disabling RTMP."
)
# generate the ffmpeg commands
camera_config.create_ffmpeg_cmds()
config.cameras[name] = camera_config
return config
@validator("cameras")
def ensure_zones_and_cameras_have_different_names(cls, v: Dict[str, CameraConfig]):
zones = [zone for camera in v.values() for zone in camera.zones.keys()]
for zone in zones:
if zone in v.keys():
raise ValueError("Zones cannot share names with cameras")
return v
@classmethod
def parse_file(cls, config_file):
with open(config_file) as f:
raw_config = f.read()
if config_file.endswith(YAML_EXT):
config = load_config_with_no_duplicates(raw_config)
elif config_file.endswith(".json"):
config = json.loads(raw_config)
return cls.parse_obj(config)