mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			3.0 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import io
 | |
| import logging
 | |
| 
 | |
| import numpy as np
 | |
| import requests
 | |
| from PIL import Image
 | |
| from pydantic import Field
 | |
| from typing_extensions import Literal
 | |
| 
 | |
| from frigate.detectors.detection_api import DetectionApi
 | |
| from frigate.detectors.detector_config import BaseDetectorConfig
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| DETECTOR_KEY = "deepstack"
 | |
| 
 | |
| 
 | |
| class DeepstackDetectorConfig(BaseDetectorConfig):
 | |
|     type: Literal[DETECTOR_KEY]
 | |
|     api_url: str = Field(
 | |
|         default="http://localhost:80/v1/vision/detection", title="DeepStack API URL"
 | |
|     )
 | |
|     api_timeout: float = Field(default=0.1, title="DeepStack API timeout (in seconds)")
 | |
|     api_key: str = Field(default="", title="DeepStack API key (if required)")
 | |
| 
 | |
| 
 | |
| class DeepStack(DetectionApi):
 | |
|     type_key = DETECTOR_KEY
 | |
| 
 | |
|     def __init__(self, detector_config: DeepstackDetectorConfig):
 | |
|         self.api_url = detector_config.api_url
 | |
|         self.api_timeout = detector_config.api_timeout
 | |
|         self.api_key = detector_config.api_key
 | |
|         self.labels = detector_config.model.merged_labelmap
 | |
| 
 | |
|     def get_label_index(self, label_value):
 | |
|         if label_value.lower() == "truck":
 | |
|             label_value = "car"
 | |
|         for index, value in self.labels.items():
 | |
|             if value == label_value.lower():
 | |
|                 return index
 | |
|         return -1
 | |
| 
 | |
|     def detect_raw(self, tensor_input):
 | |
|         image_data = np.squeeze(tensor_input).astype(np.uint8)
 | |
|         image = Image.fromarray(image_data)
 | |
|         self.w, self.h = image.size
 | |
|         with io.BytesIO() as output:
 | |
|             image.save(output, format="JPEG")
 | |
|             image_bytes = output.getvalue()
 | |
|         data = {"api_key": self.api_key}
 | |
| 
 | |
|         try:
 | |
|             response = requests.post(
 | |
|                 self.api_url,
 | |
|                 data=data,
 | |
|                 files={"image": image_bytes},
 | |
|                 timeout=self.api_timeout,
 | |
|             )
 | |
|         except requests.exceptions.RequestException:
 | |
|             logger.error("Error calling deepstack API")
 | |
|             return np.zeros((20, 6), np.float32)
 | |
| 
 | |
|         response_json = response.json()
 | |
|         detections = np.zeros((20, 6), np.float32)
 | |
|         if response_json.get("predictions") is None:
 | |
|             logger.debug(f"Error in parsing response json: {response_json}")
 | |
|             return detections
 | |
| 
 | |
|         for i, detection in enumerate(response_json.get("predictions")):
 | |
|             logger.debug(f"Response: {detection}")
 | |
|             if detection["confidence"] < 0.4:
 | |
|                 logger.debug("Break due to confidence < 0.4")
 | |
|                 break
 | |
|             label = self.get_label_index(detection["label"])
 | |
|             if label < 0:
 | |
|                 logger.debug("Break due to unknown label")
 | |
|                 break
 | |
|             detections[i] = [
 | |
|                 label,
 | |
|                 float(detection["confidence"]),
 | |
|                 detection["y_min"] / self.h,
 | |
|                 detection["x_min"] / self.w,
 | |
|                 detection["y_max"] / self.h,
 | |
|                 detection["x_max"] / self.w,
 | |
|             ]
 | |
| 
 | |
|         return detections
 |