mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			160 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			160 lines
		
	
	
		
			5.3 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import logging
 | |
| import os.path
 | |
| import re
 | |
| import urllib.request
 | |
| from typing import Literal
 | |
| 
 | |
| from pydantic import Field
 | |
| 
 | |
| from frigate.const import MODEL_CACHE_DIR
 | |
| from frigate.detectors.detection_api import DetectionApi
 | |
| from frigate.detectors.detector_config import BaseDetectorConfig, ModelTypeEnum
 | |
| 
 | |
| logger = logging.getLogger(__name__)
 | |
| 
 | |
| DETECTOR_KEY = "rknn"
 | |
| 
 | |
| supported_socs = ["rk3562", "rk3566", "rk3568", "rk3576", "rk3588"]
 | |
| 
 | |
| supported_models = {ModelTypeEnum.yolonas: "^deci-fp16-yolonas_[sml]$"}
 | |
| 
 | |
| model_cache_dir = os.path.join(MODEL_CACHE_DIR, "rknn_cache/")
 | |
| 
 | |
| 
 | |
| class RknnDetectorConfig(BaseDetectorConfig):
 | |
|     type: Literal[DETECTOR_KEY]
 | |
|     num_cores: int = Field(default=0, ge=0, le=3, title="Number of NPU cores to use.")
 | |
| 
 | |
| 
 | |
| class Rknn(DetectionApi):
 | |
|     type_key = DETECTOR_KEY
 | |
| 
 | |
|     def __init__(self, config: RknnDetectorConfig):
 | |
|         super().__init__(config)
 | |
|         self.height = config.model.height
 | |
|         self.width = config.model.width
 | |
|         core_mask = 2**config.num_cores - 1
 | |
|         soc = self.get_soc()
 | |
| 
 | |
|         model_path = config.model.path or "deci-fp16-yolonas_s"
 | |
| 
 | |
|         model_props = self.parse_model_input(model_path, soc)
 | |
| 
 | |
|         if model_props["preset"]:
 | |
|             config.model.model_type = model_props["model_type"]
 | |
| 
 | |
|             if model_props["model_type"] == ModelTypeEnum.yolonas:
 | |
|                 logger.info(
 | |
|                     "You are using yolo-nas with weights from DeciAI. "
 | |
|                     "These weights are subject to their license and can't be used commercially. "
 | |
|                     "For more information, see: https://docs.deci.ai/super-gradients/latest/LICENSE.YOLONAS.html"
 | |
|                 )
 | |
| 
 | |
|         from rknnlite.api import RKNNLite
 | |
| 
 | |
|         self.rknn = RKNNLite(verbose=False)
 | |
|         if self.rknn.load_rknn(model_props["path"]) != 0:
 | |
|             logger.error("Error initializing rknn model.")
 | |
|         if self.rknn.init_runtime(core_mask=core_mask) != 0:
 | |
|             logger.error(
 | |
|                 "Error initializing rknn runtime. Do you run docker in privileged mode?"
 | |
|             )
 | |
| 
 | |
|     def __del__(self):
 | |
|         self.rknn.release()
 | |
| 
 | |
|     def get_soc(self):
 | |
|         try:
 | |
|             with open("/proc/device-tree/compatible") as file:
 | |
|                 soc = file.read().split(",")[-1].strip("\x00")
 | |
|         except FileNotFoundError:
 | |
|             raise Exception("Make sure to run docker in privileged mode.")
 | |
| 
 | |
|         if soc not in supported_socs:
 | |
|             raise Exception(
 | |
|                 f"Your SoC is not supported. Your SoC is: {soc}. Currently these SoCs are supported: {supported_socs}."
 | |
|             )
 | |
| 
 | |
|         return soc
 | |
| 
 | |
|     def parse_model_input(self, model_path, soc):
 | |
|         model_props = {}
 | |
| 
 | |
|         # find out if user provides his own model
 | |
|         # user provided models should be a path and contain a "/"
 | |
|         if "/" in model_path:
 | |
|             model_props["preset"] = False
 | |
|             model_props["path"] = model_path
 | |
|         else:
 | |
|             model_props["preset"] = True
 | |
| 
 | |
|             """
 | |
|             Filenames follow this pattern:
 | |
|             origin-quant-basename-soc-tk_version-rev.rknn
 | |
|             origin: From where comes the model? default: upstream repo; rknn: modifications from airockchip
 | |
|             quant: i8 or fp16
 | |
|             basename: e.g. yolonas_s
 | |
|             soc: e.g. rk3588
 | |
|             tk_version: e.g. v2.0.0
 | |
|             rev: e.g. 1
 | |
| 
 | |
|             Full name could be: default-fp16-yolonas_s-rk3588-v2.0.0-1.rknn
 | |
|             """
 | |
| 
 | |
|             model_matched = False
 | |
| 
 | |
|             for model_type, pattern in supported_models.items():
 | |
|                 if re.match(pattern, model_path):
 | |
|                     model_matched = True
 | |
|                     model_props["model_type"] = model_type
 | |
| 
 | |
|             if model_matched:
 | |
|                 model_props["filename"] = model_path + f"-{soc}-v2.3.0-1.rknn"
 | |
| 
 | |
|                 model_props["path"] = model_cache_dir + model_props["filename"]
 | |
| 
 | |
|                 if not os.path.isfile(model_props["path"]):
 | |
|                     self.download_model(model_props["filename"])
 | |
|             else:
 | |
|                 supported_models_str = ", ".join(
 | |
|                     model[1:-1] for model in supported_models
 | |
|                 )
 | |
|                 raise Exception(
 | |
|                     f"Model {model_path} is unsupported. Provide your own model or choose one of the following: {supported_models_str}"
 | |
|                 )
 | |
| 
 | |
|         return model_props
 | |
| 
 | |
|     def download_model(self, filename):
 | |
|         if not os.path.isdir(model_cache_dir):
 | |
|             os.mkdir(model_cache_dir)
 | |
| 
 | |
|         urllib.request.urlretrieve(
 | |
|             f"https://github.com/MarcA711/rknn-models/releases/download/v2.3.0/{filename}",
 | |
|             model_cache_dir + filename,
 | |
|         )
 | |
| 
 | |
|     def check_config(self, config):
 | |
|         if (config.model.width != 320) or (config.model.height != 320):
 | |
|             raise Exception(
 | |
|                 "Make sure to set the model width and height to 320 in your config."
 | |
|             )
 | |
| 
 | |
|         if config.model.input_pixel_format != "bgr":
 | |
|             raise Exception(
 | |
|                 'Make sure to set the model input_pixel_format to "bgr" in your config.'
 | |
|             )
 | |
| 
 | |
|         if config.model.input_tensor != "nhwc":
 | |
|             raise Exception(
 | |
|                 'Make sure to set the model input_tensor to "nhwc" in your config.'
 | |
|             )
 | |
| 
 | |
|     def detect_raw(self, tensor_input):
 | |
|         output = self.rknn.inference(
 | |
|             [
 | |
|                 tensor_input,
 | |
|             ]
 | |
|         )
 | |
|         return self.post_process(output)
 |