mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-03-04 00:17:22 +01:00
* add wheels * move extra index url to bottom * config model option * add postprocess * fix config * jina v2 embedding class * use jina v2 in embeddings * fix ov inference * frontend * update reference config * revert device * fix truncation * return np tensors * use correct embeddings from inference * manual preprocess * clean up * docs * lower batch size for v2 only * docs clarity * wording
232 lines
8.5 KiB
Python
232 lines
8.5 KiB
Python
"""JinaV2 Embeddings."""
|
|
|
|
import io
|
|
import logging
|
|
import os
|
|
|
|
import numpy as np
|
|
from PIL import Image
|
|
from transformers import AutoTokenizer
|
|
from transformers.utils.logging import disable_progress_bar, set_verbosity_error
|
|
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.const import MODEL_CACHE_DIR, UPDATE_MODEL_STATE
|
|
from frigate.types import ModelStatusTypesEnum
|
|
from frigate.util.downloader import ModelDownloader
|
|
|
|
from .base_embedding import BaseEmbedding
|
|
from .runner import ONNXModelRunner
|
|
|
|
# disables the progress bar and download logging for downloading tokenizers and image processors
|
|
disable_progress_bar()
|
|
set_verbosity_error()
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class JinaV2Embedding(BaseEmbedding):
|
|
def __init__(
|
|
self,
|
|
model_size: str,
|
|
requestor: InterProcessRequestor,
|
|
device: str = "AUTO",
|
|
embedding_type: str = None,
|
|
):
|
|
model_file = (
|
|
"model_fp16.onnx" if model_size == "large" else "model_quantized.onnx"
|
|
)
|
|
super().__init__(
|
|
model_name="jinaai/jina-clip-v2",
|
|
model_file=model_file,
|
|
download_urls={
|
|
model_file: f"https://huggingface.co/jinaai/jina-clip-v2/resolve/main/onnx/{model_file}",
|
|
"preprocessor_config.json": "https://huggingface.co/jinaai/jina-clip-v2/resolve/main/preprocessor_config.json",
|
|
},
|
|
)
|
|
self.tokenizer_file = "tokenizer"
|
|
self.embedding_type = embedding_type
|
|
self.requestor = requestor
|
|
self.model_size = model_size
|
|
self.device = device
|
|
self.download_path = os.path.join(MODEL_CACHE_DIR, self.model_name)
|
|
self.tokenizer = None
|
|
self.image_processor = None
|
|
self.runner = None
|
|
files_names = list(self.download_urls.keys()) + [self.tokenizer_file]
|
|
if not all(
|
|
os.path.exists(os.path.join(self.download_path, n)) for n in files_names
|
|
):
|
|
logger.debug(f"starting model download for {self.model_name}")
|
|
self.downloader = ModelDownloader(
|
|
model_name=self.model_name,
|
|
download_path=self.download_path,
|
|
file_names=files_names,
|
|
download_func=self._download_model,
|
|
)
|
|
self.downloader.ensure_model_files()
|
|
else:
|
|
self.downloader = None
|
|
ModelDownloader.mark_files_state(
|
|
self.requestor,
|
|
self.model_name,
|
|
files_names,
|
|
ModelStatusTypesEnum.downloaded,
|
|
)
|
|
self._load_model_and_utils()
|
|
logger.debug(f"models are already downloaded for {self.model_name}")
|
|
|
|
def _download_model(self, path: str):
|
|
try:
|
|
file_name = os.path.basename(path)
|
|
|
|
if file_name in self.download_urls:
|
|
ModelDownloader.download_from_url(self.download_urls[file_name], path)
|
|
elif file_name == self.tokenizer_file:
|
|
if not os.path.exists(os.path.join(path, self.model_name)):
|
|
logger.info(f"Downloading {self.model_name} tokenizer")
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
self.model_name,
|
|
trust_remote_code=True,
|
|
cache_dir=os.path.join(
|
|
MODEL_CACHE_DIR, self.model_name, "tokenizer"
|
|
),
|
|
clean_up_tokenization_spaces=True,
|
|
)
|
|
tokenizer.save_pretrained(path)
|
|
self.requestor.send_data(
|
|
UPDATE_MODEL_STATE,
|
|
{
|
|
"model": f"{self.model_name}-{file_name}",
|
|
"state": ModelStatusTypesEnum.downloaded,
|
|
},
|
|
)
|
|
except Exception:
|
|
self.requestor.send_data(
|
|
UPDATE_MODEL_STATE,
|
|
{
|
|
"model": f"{self.model_name}-{file_name}",
|
|
"state": ModelStatusTypesEnum.error,
|
|
},
|
|
)
|
|
|
|
def _load_model_and_utils(self):
|
|
if self.runner is None:
|
|
if self.downloader:
|
|
self.downloader.wait_for_download()
|
|
|
|
tokenizer_path = os.path.join(
|
|
f"{MODEL_CACHE_DIR}/{self.model_name}/tokenizer"
|
|
)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(
|
|
self.model_name,
|
|
cache_dir=tokenizer_path,
|
|
trust_remote_code=True,
|
|
clean_up_tokenization_spaces=True,
|
|
)
|
|
|
|
self.runner = ONNXModelRunner(
|
|
os.path.join(self.download_path, self.model_file),
|
|
self.device,
|
|
self.model_size,
|
|
)
|
|
|
|
def _preprocess_image(self, image_data: bytes | Image.Image) -> np.ndarray:
|
|
"""
|
|
Manually preprocess a single image from bytes or PIL.Image to (3, 512, 512).
|
|
"""
|
|
if isinstance(image_data, bytes):
|
|
image = Image.open(io.BytesIO(image_data))
|
|
else:
|
|
image = image_data
|
|
|
|
if image.mode != "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
image = image.resize((512, 512), Image.Resampling.LANCZOS)
|
|
|
|
# Convert to numpy array, normalize to [0, 1], and transpose to (channels, height, width)
|
|
image_array = np.array(image, dtype=np.float32) / 255.0
|
|
image_array = np.transpose(image_array, (2, 0, 1)) # (H, W, C) -> (C, H, W)
|
|
|
|
return image_array
|
|
|
|
def _preprocess_inputs(self, raw_inputs):
|
|
"""
|
|
Preprocess inputs into a list of real input tensors (no dummies).
|
|
- For text: Returns list of input_ids.
|
|
- For vision: Returns list of pixel_values.
|
|
"""
|
|
if not isinstance(raw_inputs, list):
|
|
raw_inputs = [raw_inputs]
|
|
|
|
processed = []
|
|
if self.embedding_type == "text":
|
|
for text in raw_inputs:
|
|
input_ids = self.tokenizer([text], return_tensors="np")["input_ids"]
|
|
processed.append(input_ids)
|
|
elif self.embedding_type == "vision":
|
|
for img in raw_inputs:
|
|
pixel_values = self._preprocess_image(img)
|
|
processed.append(
|
|
pixel_values[np.newaxis, ...]
|
|
) # Add batch dim: (1, 3, 512, 512)
|
|
else:
|
|
raise ValueError(
|
|
f"Invalid embedding_type: {self.embedding_type}. Must be 'text' or 'vision'."
|
|
)
|
|
return processed
|
|
|
|
def _postprocess_outputs(self, outputs):
|
|
"""
|
|
Process ONNX model outputs, truncating each embedding in the array to truncate_dim.
|
|
- outputs: NumPy array of embeddings.
|
|
- Returns: List of truncated embeddings.
|
|
"""
|
|
# size of vector in database
|
|
truncate_dim = 768
|
|
|
|
# jina v2 defaults to 1024 and uses Matryoshka representation, so
|
|
# truncating only causes an extremely minor decrease in retrieval accuracy
|
|
if outputs.shape[-1] > truncate_dim:
|
|
outputs = outputs[..., :truncate_dim]
|
|
|
|
return outputs
|
|
|
|
def __call__(
|
|
self, inputs: list[str] | list[Image.Image] | list[str], embedding_type=None
|
|
) -> list[np.ndarray]:
|
|
self.embedding_type = embedding_type
|
|
if not self.embedding_type:
|
|
raise ValueError(
|
|
"embedding_type must be specified either in __init__ or __call__"
|
|
)
|
|
|
|
self._load_model_and_utils()
|
|
processed = self._preprocess_inputs(inputs)
|
|
batch_size = len(processed)
|
|
|
|
# Prepare ONNX inputs with matching batch sizes
|
|
onnx_inputs = {}
|
|
if self.embedding_type == "text":
|
|
onnx_inputs["input_ids"] = np.stack([x[0] for x in processed])
|
|
onnx_inputs["pixel_values"] = np.zeros(
|
|
(batch_size, 3, 512, 512), dtype=np.float32
|
|
)
|
|
elif self.embedding_type == "vision":
|
|
onnx_inputs["input_ids"] = np.zeros((batch_size, 16), dtype=np.int64)
|
|
onnx_inputs["pixel_values"] = np.stack([x[0] for x in processed])
|
|
else:
|
|
raise ValueError("Invalid embedding type")
|
|
|
|
# Run inference
|
|
outputs = self.runner.run(onnx_inputs)
|
|
if self.embedding_type == "text":
|
|
embeddings = outputs[2] # text embeddings
|
|
elif self.embedding_type == "vision":
|
|
embeddings = outputs[3] # image embeddings
|
|
else:
|
|
raise ValueError("Invalid embedding type")
|
|
|
|
embeddings = self._postprocess_outputs(embeddings)
|
|
return [embedding for embedding in embeddings]
|