blakeblackshear.frigate/frigate/util/model.py
Nicolas Mowen 03c8e5ce8d Improve face recognition (#15205)
* Validate faces using cosine distance and SVC

* Formatting

* Use opencv instead of face embedding

* Update docs for training data

* Adjust to score system

* Set bounds

* remove face embeddings

* Update writing images

* Add face library page

* Add ability to select file

* Install opencv deps

* Cleanup

* Use different deps

* Move deps

* Cleanup

* Only show face library for desktop

* Implement deleting

* Add ability to upload image

* Add support for uploading images
2025-01-18 21:34:09 -07:00

201 lines
6.5 KiB
Python

"""Model Utils"""
import logging
import os
from typing import Any, Optional
import cv2
import numpy as np
import onnxruntime as ort
from playhouse.sqliteq import SqliteQueueDatabase
from frigate.config.semantic_search import FaceRecognitionConfig
try:
import openvino as ov
except ImportError:
# openvino is not included
pass
logger = logging.getLogger(__name__)
MIN_MATCHING_FACES = 2
def get_ort_providers(
force_cpu: bool = False, device: str = "AUTO", requires_fp16: bool = False
) -> tuple[list[str], list[dict[str, any]]]:
if force_cpu:
return (
["CPUExecutionProvider"],
[
{
"enable_cpu_mem_arena": False,
}
],
)
providers = []
options = []
for provider in ort.get_available_providers():
if provider == "CUDAExecutionProvider":
device_id = 0 if not device.isdigit() else int(device)
providers.append(provider)
options.append(
{
"arena_extend_strategy": "kSameAsRequested",
"device_id": device_id,
}
)
elif provider == "TensorrtExecutionProvider":
# TensorrtExecutionProvider uses too much memory without options to control it
# so it is not enabled by default
if device == "Tensorrt":
os.makedirs(
"/config/model_cache/tensorrt/ort/trt-engines", exist_ok=True
)
device_id = 0 if not device.isdigit() else int(device)
providers.append(provider)
options.append(
{
"device_id": device_id,
"trt_fp16_enable": requires_fp16
and os.environ.get("USE_FP_16", "True") != "False",
"trt_timing_cache_enable": True,
"trt_engine_cache_enable": True,
"trt_timing_cache_path": "/config/model_cache/tensorrt/ort",
"trt_engine_cache_path": "/config/model_cache/tensorrt/ort/trt-engines",
}
)
else:
continue
elif provider == "OpenVINOExecutionProvider":
os.makedirs("/config/model_cache/openvino/ort", exist_ok=True)
providers.append(provider)
options.append(
{
"arena_extend_strategy": "kSameAsRequested",
"cache_dir": "/config/model_cache/openvino/ort",
"device_type": device,
}
)
elif provider == "CPUExecutionProvider":
providers.append(provider)
options.append(
{
"enable_cpu_mem_arena": False,
}
)
else:
providers.append(provider)
options.append({})
return (providers, options)
class ONNXModelRunner:
"""Run onnx models optimally based on available hardware."""
def __init__(self, model_path: str, device: str, requires_fp16: bool = False):
self.model_path = model_path
self.ort: ort.InferenceSession = None
self.ov: ov.Core = None
providers, options = get_ort_providers(device == "CPU", device, requires_fp16)
self.interpreter = None
if "OpenVINOExecutionProvider" in providers:
try:
# use OpenVINO directly
self.type = "ov"
self.ov = ov.Core()
self.ov.set_property(
{ov.properties.cache_dir: "/config/model_cache/openvino"}
)
self.interpreter = self.ov.compile_model(
model=model_path, device_name=device
)
except Exception as e:
logger.warning(
f"OpenVINO failed to build model, using CPU instead: {e}"
)
self.interpreter = None
# Use ONNXRuntime
if self.interpreter is None:
self.type = "ort"
self.ort = ort.InferenceSession(
model_path,
providers=providers,
provider_options=options,
)
def get_input_names(self) -> list[str]:
if self.type == "ov":
input_names = []
for input in self.interpreter.inputs:
input_names.extend(input.names)
return input_names
elif self.type == "ort":
return [input.name for input in self.ort.get_inputs()]
def run(self, input: dict[str, Any]) -> Any:
if self.type == "ov":
infer_request = self.interpreter.create_infer_request()
input_tensor = list(input.values())
if len(input_tensor) == 1:
input_tensor = ov.Tensor(array=input_tensor[0])
else:
input_tensor = ov.Tensor(array=input_tensor)
infer_request.infer(input_tensor)
return [infer_request.get_output_tensor().data]
elif self.type == "ort":
return self.ort.run(None, input)
class FaceClassificationModel:
def __init__(self, config: FaceRecognitionConfig, db: SqliteQueueDatabase):
self.config = config
self.db = db
self.recognizer = cv2.face.LBPHFaceRecognizer_create(radius=4, threshold=(1 - config.threshold) * 1000)
self.label_map: dict[int, str] = {}
def __build_classifier(self) -> None:
labels = []
faces = []
dir = "/media/frigate/clips/faces"
for idx, name in enumerate(os.listdir(dir)):
self.label_map[idx] = name
face_folder = os.path.join(dir, name)
for image in os.listdir(face_folder):
img = cv2.imread(os.path.join(face_folder, image))
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
equ = cv2.equalizeHist(gray)
faces.append(equ)
labels.append(idx)
self.recognizer.train(faces, np.array(labels))
def clear_classifier(self) -> None:
self.classifier = None
self.labeler = None
def classify_face(self, face_image: np.ndarray) -> Optional[tuple[str, float]]:
if not self.label_map:
self.__build_classifier()
index, distance = self.recognizer.predict(cv2.equalizeHist(cv2.cvtColor(face_image, cv2.COLOR_BGR2GRAY)))
if index == -1:
return None
score = 1.0 - (distance / 1000)
return self.label_map[index], round(score, 2)