blakeblackshear.frigate/frigate/edgetpu.py
2020-03-03 20:26:53 -06:00

138 lines
5.2 KiB
Python

import os
import datetime
import multiprocessing as mp
import numpy as np
import SharedArray as sa
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, 'r', encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(' ', maxsplit=1)[0].isdigit():
pairs = [line.split(' ', maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector():
def __init__(self, model_file):
edge_tpu_delegate = None
try:
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
except ValueError:
print("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path=model_file)
else:
self.interpreter = tflite.Interpreter(
model_path=model_file,
experimental_delegates=[edge_tpu_delegate])
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
detections = np.zeros((20,6), np.float32)
for i, score in enumerate(scores):
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
return detections
class EdgeTPUProcess():
def __init__(self, model):
# TODO: see if we can use the plasma store with a queue and maintain the same speeds
try:
sa.delete("frame")
except:
pass
try:
sa.delete("detections")
except:
pass
self.input_frame = sa.create("frame", shape=(1,300,300,3), dtype=np.uint8)
self.detections = sa.create("detections", shape=(20,6), dtype=np.float32)
self.detect_lock = mp.Lock()
self.detect_ready = mp.Event()
self.frame_ready = mp.Event()
self.fps = mp.Value('d', 0.0)
self.avg_inference_speed = mp.Value('d', 10.0)
def run_detector(model, detect_ready, frame_ready, fps, avg_speed):
print(f"Starting detection process: {os.getpid()}")
object_detector = ObjectDetector(model)
input_frame = sa.attach("frame")
detections = sa.attach("detections")
fps_tracker = EventsPerSecond()
fps_tracker.start()
while True:
# wait until a frame is ready
frame_ready.wait()
start = datetime.datetime.now().timestamp()
# signal that the process is busy
frame_ready.clear()
detections[:] = object_detector.detect_raw(input_frame)
# signal that the process is ready to detect
detect_ready.set()
fps_tracker.update()
fps.value = fps_tracker.eps()
duration = datetime.datetime.now().timestamp()-start
avg_speed.value = (avg_speed.value*9 + duration)/10
self.detect_process = mp.Process(target=run_detector, args=(model, self.detect_ready, self.frame_ready, self.fps, self.avg_inference_speed))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, labels, detect_lock, detect_ready, frame_ready):
self.labels = load_labels(labels)
self.input_frame = sa.attach("frame")
self.detections = sa.attach("detections")
self.detect_lock = detect_lock
self.detect_ready = detect_ready
self.frame_ready = frame_ready
def detect(self, tensor_input, threshold=.4):
detections = []
with self.detect_lock:
self.input_frame[:] = tensor_input
# unset detections and signal that a frame is ready
self.detect_ready.clear()
self.frame_ready.set()
# wait until the detection process is finished,
self.detect_ready.wait()
for d in self.detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
return detections