mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Don't wait for topic * Refactor object processing and camera state * Move manual event handling to camera state / tracked object * Cleanup * Refactor audio to use internal zmq * Cleanup * Clenaup * Cleanup * Quick label fix * Fix tests * Cleanup
		
			
				
	
	
		
			322 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			322 lines
		
	
	
		
			9.8 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import csv
 | 
						|
import json
 | 
						|
import logging
 | 
						|
import multiprocessing as mp
 | 
						|
import os
 | 
						|
import subprocess as sp
 | 
						|
import sys
 | 
						|
 | 
						|
import click
 | 
						|
import cv2
 | 
						|
import numpy as np
 | 
						|
 | 
						|
sys.path.append("/workspace/frigate")
 | 
						|
 | 
						|
from frigate.config import FrigateConfig  # noqa: E402
 | 
						|
from frigate.motion import MotionDetector  # noqa: E402
 | 
						|
from frigate.object_detection import LocalObjectDetector  # noqa: E402
 | 
						|
from frigate.track.centroid_tracker import CentroidTracker  # noqa: E402
 | 
						|
from frigate.track.object_processing import CameraState  # noqa: E402
 | 
						|
from frigate.util import (  # noqa: E402
 | 
						|
    EventsPerSecond,
 | 
						|
    SharedMemoryFrameManager,
 | 
						|
    draw_box_with_label,
 | 
						|
)
 | 
						|
from frigate.video import (  # noqa: E402
 | 
						|
    capture_frames,
 | 
						|
    process_frames,
 | 
						|
    start_or_restart_ffmpeg,
 | 
						|
)
 | 
						|
 | 
						|
logging.basicConfig(level=logging.DEBUG)
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
def get_frame_shape(source):
 | 
						|
    ffprobe_cmd = [
 | 
						|
        "ffprobe",
 | 
						|
        "-v",
 | 
						|
        "panic",
 | 
						|
        "-show_error",
 | 
						|
        "-show_streams",
 | 
						|
        "-of",
 | 
						|
        "json",
 | 
						|
        source,
 | 
						|
    ]
 | 
						|
    p = sp.run(ffprobe_cmd, capture_output=True)
 | 
						|
    info = json.loads(p.stdout)
 | 
						|
 | 
						|
    video_info = [s for s in info["streams"] if s["codec_type"] == "video"][0]
 | 
						|
 | 
						|
    if video_info["height"] != 0 and video_info["width"] != 0:
 | 
						|
        return (video_info["height"], video_info["width"], 3)
 | 
						|
 | 
						|
    # fallback to using opencv if ffprobe didn't succeed
 | 
						|
    video = cv2.VideoCapture(source)
 | 
						|
    ret, frame = video.read()
 | 
						|
    frame_shape = frame.shape
 | 
						|
    video.release()
 | 
						|
    return frame_shape
 | 
						|
 | 
						|
 | 
						|
class ProcessClip:
 | 
						|
    def __init__(self, clip_path, frame_shape, config: FrigateConfig):
 | 
						|
        self.clip_path = clip_path
 | 
						|
        self.camera_name = "camera"
 | 
						|
        self.config = config
 | 
						|
        self.camera_config = self.config.cameras["camera"]
 | 
						|
        self.frame_shape = self.camera_config.frame_shape
 | 
						|
        self.ffmpeg_cmd = [
 | 
						|
            c["cmd"] for c in self.camera_config.ffmpeg_cmds if "detect" in c["roles"]
 | 
						|
        ][0]
 | 
						|
        self.frame_manager = SharedMemoryFrameManager()
 | 
						|
        self.frame_queue = mp.Queue()
 | 
						|
        self.detected_objects_queue = mp.Queue()
 | 
						|
        self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
 | 
						|
 | 
						|
    def load_frames(self):
 | 
						|
        fps = EventsPerSecond()
 | 
						|
        skipped_fps = EventsPerSecond()
 | 
						|
        current_frame = mp.Value("d", 0.0)
 | 
						|
        frame_size = (
 | 
						|
            self.camera_config.frame_shape_yuv[0]
 | 
						|
            * self.camera_config.frame_shape_yuv[1]
 | 
						|
        )
 | 
						|
        ffmpeg_process = start_or_restart_ffmpeg(
 | 
						|
            self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size
 | 
						|
        )
 | 
						|
        capture_frames(
 | 
						|
            ffmpeg_process,
 | 
						|
            self.camera_name,
 | 
						|
            self.camera_config.frame_shape_yuv,
 | 
						|
            self.frame_manager,
 | 
						|
            self.frame_queue,
 | 
						|
            fps,
 | 
						|
            skipped_fps,
 | 
						|
            current_frame,
 | 
						|
        )
 | 
						|
        ffmpeg_process.wait()
 | 
						|
        ffmpeg_process.communicate()
 | 
						|
 | 
						|
    def process_frames(
 | 
						|
        self, object_detector, objects_to_track=["person"], object_filters={}
 | 
						|
    ):
 | 
						|
        mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
 | 
						|
        mask[:] = 255
 | 
						|
        motion_detector = MotionDetector(self.frame_shape, self.camera_config.motion)
 | 
						|
        motion_detector.save_images = False
 | 
						|
 | 
						|
        object_tracker = CentroidTracker(self.camera_config.detect)
 | 
						|
        process_info = {
 | 
						|
            "process_fps": mp.Value("d", 0.0),
 | 
						|
            "detection_fps": mp.Value("d", 0.0),
 | 
						|
            "detection_frame": mp.Value("d", 0.0),
 | 
						|
        }
 | 
						|
 | 
						|
        detection_enabled = mp.Value("d", 1)
 | 
						|
        motion_enabled = mp.Value("d", True)
 | 
						|
        stop_event = mp.Event()
 | 
						|
 | 
						|
        process_frames(
 | 
						|
            self.camera_name,
 | 
						|
            self.frame_queue,
 | 
						|
            self.frame_shape,
 | 
						|
            self.config.model,
 | 
						|
            self.camera_config.detect,
 | 
						|
            self.frame_manager,
 | 
						|
            motion_detector,
 | 
						|
            object_detector,
 | 
						|
            object_tracker,
 | 
						|
            self.detected_objects_queue,
 | 
						|
            process_info,
 | 
						|
            objects_to_track,
 | 
						|
            object_filters,
 | 
						|
            detection_enabled,
 | 
						|
            motion_enabled,
 | 
						|
            stop_event,
 | 
						|
            exit_on_empty=True,
 | 
						|
        )
 | 
						|
 | 
						|
    def stats(self, debug_path=None):
 | 
						|
        total_regions = 0
 | 
						|
        total_motion_boxes = 0
 | 
						|
        object_ids = set()
 | 
						|
        total_frames = 0
 | 
						|
 | 
						|
        while not self.detected_objects_queue.empty():
 | 
						|
            (
 | 
						|
                camera_name,
 | 
						|
                frame_time,
 | 
						|
                current_tracked_objects,
 | 
						|
                motion_boxes,
 | 
						|
                regions,
 | 
						|
            ) = self.detected_objects_queue.get()
 | 
						|
 | 
						|
            if debug_path:
 | 
						|
                self.save_debug_frame(
 | 
						|
                    debug_path, frame_time, current_tracked_objects.values()
 | 
						|
                )
 | 
						|
 | 
						|
            self.camera_state.update(
 | 
						|
                frame_time, current_tracked_objects, motion_boxes, regions
 | 
						|
            )
 | 
						|
            total_regions += len(regions)
 | 
						|
            total_motion_boxes += len(motion_boxes)
 | 
						|
            top_score = 0
 | 
						|
            for id, obj in self.camera_state.tracked_objects.items():
 | 
						|
                if not obj.false_positive:
 | 
						|
                    object_ids.add(id)
 | 
						|
                    if obj.top_score > top_score:
 | 
						|
                        top_score = obj.top_score
 | 
						|
 | 
						|
            total_frames += 1
 | 
						|
 | 
						|
            self.frame_manager.delete(self.camera_state.previous_frame_id)
 | 
						|
 | 
						|
        return {
 | 
						|
            "total_regions": total_regions,
 | 
						|
            "total_motion_boxes": total_motion_boxes,
 | 
						|
            "true_positive_objects": len(object_ids),
 | 
						|
            "total_frames": total_frames,
 | 
						|
            "top_score": top_score,
 | 
						|
        }
 | 
						|
 | 
						|
    def save_debug_frame(self, debug_path, frame_time, tracked_objects):
 | 
						|
        current_frame = cv2.cvtColor(
 | 
						|
            self.frame_manager.get(
 | 
						|
                f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv
 | 
						|
            ),
 | 
						|
            cv2.COLOR_YUV2BGR_I420,
 | 
						|
        )
 | 
						|
        # draw the bounding boxes on the frame
 | 
						|
        for obj in tracked_objects:
 | 
						|
            thickness = 2
 | 
						|
            color = (0, 0, 175)
 | 
						|
            if obj["frame_time"] != frame_time:
 | 
						|
                thickness = 1
 | 
						|
                color = (255, 0, 0)
 | 
						|
            else:
 | 
						|
                color = (255, 255, 0)
 | 
						|
 | 
						|
            # draw the bounding boxes on the frame
 | 
						|
            box = obj["box"]
 | 
						|
            draw_box_with_label(
 | 
						|
                current_frame,
 | 
						|
                box[0],
 | 
						|
                box[1],
 | 
						|
                box[2],
 | 
						|
                box[3],
 | 
						|
                obj["id"],
 | 
						|
                f"{int(obj['score'] * 100)}% {int(obj['area'])}",
 | 
						|
                thickness=thickness,
 | 
						|
                color=color,
 | 
						|
            )
 | 
						|
            # draw the regions on the frame
 | 
						|
            region = obj["region"]
 | 
						|
            draw_box_with_label(
 | 
						|
                current_frame,
 | 
						|
                region[0],
 | 
						|
                region[1],
 | 
						|
                region[2],
 | 
						|
                region[3],
 | 
						|
                "region",
 | 
						|
                "",
 | 
						|
                thickness=1,
 | 
						|
                color=(0, 255, 0),
 | 
						|
            )
 | 
						|
 | 
						|
        cv2.imwrite(
 | 
						|
            f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time * 1000000)}.jpg",
 | 
						|
            current_frame,
 | 
						|
        )
 | 
						|
 | 
						|
 | 
						|
@click.command()
 | 
						|
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
 | 
						|
@click.option("-l", "--label", default="person", help="Label name to detect.")
 | 
						|
@click.option("-o", "--output", default=None, help="File to save csv of data")
 | 
						|
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
 | 
						|
def process(path, label, output, debug_path):
 | 
						|
    clips = []
 | 
						|
    if os.path.isdir(path):
 | 
						|
        files = os.listdir(path)
 | 
						|
        files.sort()
 | 
						|
        clips = [os.path.join(path, file) for file in files]
 | 
						|
    elif os.path.isfile(path):
 | 
						|
        clips.append(path)
 | 
						|
 | 
						|
    json_config = {
 | 
						|
        "mqtt": {"enabled": False},
 | 
						|
        "detectors": {"coral": {"type": "edgetpu", "device": "usb"}},
 | 
						|
        "cameras": {
 | 
						|
            "camera": {
 | 
						|
                "ffmpeg": {
 | 
						|
                    "inputs": [
 | 
						|
                        {
 | 
						|
                            "path": "path.mp4",
 | 
						|
                            "global_args": "-hide_banner",
 | 
						|
                            "input_args": "-loglevel info",
 | 
						|
                            "roles": ["detect"],
 | 
						|
                        }
 | 
						|
                    ]
 | 
						|
                },
 | 
						|
                "record": {"enabled": False},
 | 
						|
            }
 | 
						|
        },
 | 
						|
    }
 | 
						|
 | 
						|
    object_detector = LocalObjectDetector(labels="/labelmap.txt")
 | 
						|
 | 
						|
    results = []
 | 
						|
    for c in clips:
 | 
						|
        logger.info(c)
 | 
						|
        frame_shape = get_frame_shape(c)
 | 
						|
 | 
						|
        json_config["cameras"]["camera"]["detect"] = {
 | 
						|
            "height": frame_shape[0],
 | 
						|
            "width": frame_shape[1],
 | 
						|
        }
 | 
						|
        json_config["cameras"]["camera"]["ffmpeg"]["inputs"][0]["path"] = c
 | 
						|
 | 
						|
        frigate_config = FrigateConfig(**json_config)
 | 
						|
        process_clip = ProcessClip(c, frame_shape, frigate_config)
 | 
						|
        process_clip.load_frames()
 | 
						|
        process_clip.process_frames(object_detector, objects_to_track=[label])
 | 
						|
 | 
						|
        results.append((c, process_clip.stats(debug_path)))
 | 
						|
 | 
						|
    positive_count = sum(
 | 
						|
        1 for result in results if result[1]["true_positive_objects"] > 0
 | 
						|
    )
 | 
						|
    print(
 | 
						|
        f"Objects were detected in {positive_count}/{len(results)}({positive_count / len(results) * 100:.2f}%) clip(s)."
 | 
						|
    )
 | 
						|
 | 
						|
    if output:
 | 
						|
        # now we will open a file for writing
 | 
						|
        data_file = open(output, "w")
 | 
						|
 | 
						|
        # create the csv writer object
 | 
						|
        csv_writer = csv.writer(data_file)
 | 
						|
 | 
						|
        # Counter variable used for writing
 | 
						|
        # headers to the CSV file
 | 
						|
        count = 0
 | 
						|
 | 
						|
        for result in results:
 | 
						|
            if count == 0:
 | 
						|
                # Writing headers of CSV file
 | 
						|
                header = ["file"] + list(result[1].keys())
 | 
						|
                csv_writer.writerow(header)
 | 
						|
                count += 1
 | 
						|
 | 
						|
            # Writing data of CSV file
 | 
						|
            csv_writer.writerow([result[0]] + list(result[1].values()))
 | 
						|
 | 
						|
        data_file.close()
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    process()
 |