blakeblackshear.frigate/frigate/track/tracked_object.py
Nicolas Mowen 8ac4b001a2
Various fixes (#14410)
* Fix access

* Reorganize tracked object for imports

* Separate out rockchip build

* Formatting

* Use original ffmpeg build

* Fix build

* Update default search type value
2024-10-17 11:02:27 -05:00

448 lines
16 KiB
Python

"""Object attribute."""
import base64
import logging
from collections import defaultdict
from statistics import median
import cv2
import numpy as np
from frigate.config import (
CameraConfig,
ModelConfig,
)
from frigate.util.image import (
area,
calculate_region,
draw_box_with_label,
draw_timestamp,
is_better_thumbnail,
)
from frigate.util.object import box_inside
logger = logging.getLogger(__name__)
class TrackedObject:
def __init__(
self,
model_config: ModelConfig,
camera_config: CameraConfig,
frame_cache,
obj_data: dict[str, any],
):
# set the score history then remove as it is not part of object state
self.score_history = obj_data["score_history"]
del obj_data["score_history"]
self.obj_data = obj_data
self.colormap = model_config.colormap
self.logos = model_config.all_attribute_logos
self.camera_config = camera_config
self.frame_cache = frame_cache
self.zone_presence: dict[str, int] = {}
self.zone_loitering: dict[str, int] = {}
self.current_zones = []
self.entered_zones = []
self.attributes = defaultdict(float)
self.false_positive = True
self.has_clip = False
self.has_snapshot = False
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.last_updated = 0
self.last_published = 0
self.frame = None
self.active = True
self.pending_loitering = False
self.previous = self.to_dict()
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data["label"]].threshold
return self.computed_score < threshold
def compute_score(self):
"""get median of scores for object."""
return median(self.score_history)
def update(self, current_frame_time: float, obj_data, has_valid_frame: bool):
thumb_update = False
significant_change = False
autotracker_update = False
# if the object is not in the current frame, add a 0.0 to the score history
if obj_data["frame_time"] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(obj_data["score"])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
# calculate if this is a false positive
self.computed_score = self.compute_score()
if self.computed_score > self.top_score:
self.top_score = self.computed_score
self.false_positive = self._is_false_positive()
self.active = self.is_active()
if not self.false_positive and has_valid_frame:
# determine if this frame is a better thumbnail
if self.thumbnail_data is None or is_better_thumbnail(
self.obj_data["label"],
self.thumbnail_data,
obj_data,
self.camera_config.frame_shape,
):
self.thumbnail_data = {
"frame_time": current_frame_time,
"box": obj_data["box"],
"area": obj_data["area"],
"region": obj_data["region"],
"score": obj_data["score"],
"attributes": obj_data["attributes"],
}
thumb_update = True
# check zones
current_zones = []
bottom_center = (obj_data["centroid"][0], obj_data["box"][3])
in_loitering_zone = False
# check each zone
for name, zone in self.camera_config.zones.items():
# if the zone is not for this object type, skip
if len(zone.objects) > 0 and obj_data["label"] not in zone.objects:
continue
contour = zone.contour
zone_score = self.zone_presence.get(name, 0) + 1
# check if the object is in the zone
if cv2.pointPolygonTest(contour, bottom_center, False) >= 0:
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
# an object is only considered present in a zone if it has a zone inertia of 3+
if zone_score >= zone.inertia:
# if the zone has loitering time, update loitering status
if zone.loitering_time > 0:
in_loitering_zone = True
loitering_score = self.zone_loitering.get(name, 0) + 1
# loitering time is configured as seconds, convert to count of frames
if loitering_score >= (
self.camera_config.zones[name].loitering_time
* self.camera_config.detect.fps
):
current_zones.append(name)
if name not in self.entered_zones:
self.entered_zones.append(name)
else:
self.zone_loitering[name] = loitering_score
else:
self.zone_presence[name] = zone_score
else:
# once an object has a zone inertia of 3+ it is not checked anymore
if 0 < zone_score < zone.inertia:
self.zone_presence[name] = zone_score - 1
# update loitering status
self.pending_loitering = in_loitering_zone
# maintain attributes
for attr in obj_data["attributes"]:
if self.attributes[attr["label"]] < attr["score"]:
self.attributes[attr["label"]] = attr["score"]
# populate the sub_label for object with highest scoring logo
if self.obj_data["label"] in ["car", "package", "person"]:
recognized_logos = {
k: self.attributes[k] for k in self.logos if k in self.attributes
}
if len(recognized_logos) > 0:
max_logo = max(recognized_logos, key=recognized_logos.get)
# don't overwrite sub label if it is already set
if (
self.obj_data.get("sub_label") is None
or self.obj_data["sub_label"][0] == max_logo
):
self.obj_data["sub_label"] = (max_logo, recognized_logos[max_logo])
# check for significant change
if not self.false_positive:
# if the zones changed, signal an update
if set(self.current_zones) != set(current_zones):
significant_change = True
# if the position changed, signal an update
if self.obj_data["position_changes"] != obj_data["position_changes"]:
significant_change = True
if self.obj_data["attributes"] != obj_data["attributes"]:
significant_change = True
# if the state changed between stationary and active
if self.previous["active"] != self.active:
significant_change = True
# update at least once per minute
if self.obj_data["frame_time"] - self.previous["frame_time"] > 60:
significant_change = True
# update autotrack at most 3 objects per second
if self.obj_data["frame_time"] - self.previous["frame_time"] >= (1 / 3):
autotracker_update = True
self.obj_data.update(obj_data)
self.current_zones = current_zones
return (thumb_update, significant_change, autotracker_update)
def to_dict(self, include_thumbnail: bool = False):
event = {
"id": self.obj_data["id"],
"camera": self.camera_config.name,
"frame_time": self.obj_data["frame_time"],
"snapshot": self.thumbnail_data,
"label": self.obj_data["label"],
"sub_label": self.obj_data.get("sub_label"),
"top_score": self.top_score,
"false_positive": self.false_positive,
"start_time": self.obj_data["start_time"],
"end_time": self.obj_data.get("end_time", None),
"score": self.obj_data["score"],
"box": self.obj_data["box"],
"area": self.obj_data["area"],
"ratio": self.obj_data["ratio"],
"region": self.obj_data["region"],
"active": self.active,
"stationary": not self.active,
"motionless_count": self.obj_data["motionless_count"],
"position_changes": self.obj_data["position_changes"],
"current_zones": self.current_zones.copy(),
"entered_zones": self.entered_zones.copy(),
"has_clip": self.has_clip,
"has_snapshot": self.has_snapshot,
"attributes": self.attributes,
"current_attributes": self.obj_data["attributes"],
"pending_loitering": self.pending_loitering,
}
if include_thumbnail:
event["thumbnail"] = base64.b64encode(self.get_thumbnail()).decode("utf-8")
return event
def is_active(self):
return not self.is_stationary()
def is_stationary(self):
return (
self.obj_data["motionless_count"]
> self.camera_config.detect.stationary.threshold
)
def get_thumbnail(self):
if (
self.thumbnail_data is None
or self.thumbnail_data["frame_time"] not in self.frame_cache
):
ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8))
jpg_bytes = self.get_jpg_bytes(
timestamp=False, bounding_box=False, crop=True, height=175
)
if jpg_bytes:
return jpg_bytes
else:
ret, jpg = cv2.imencode(".jpg", np.zeros((175, 175, 3), np.uint8))
return jpg.tobytes()
def get_clean_png(self):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(
self.frame_cache[self.thumbnail_data["frame_time"]],
cv2.COLOR_YUV2BGR_I420,
)
except KeyError:
logger.warning(
f"Unable to create clean png because frame {self.thumbnail_data['frame_time']} is not in the cache"
)
return None
ret, png = cv2.imencode(".png", best_frame)
if ret:
return png.tobytes()
else:
return None
def get_jpg_bytes(
self, timestamp=False, bounding_box=False, crop=False, height=None, quality=70
):
if self.thumbnail_data is None:
return None
try:
best_frame = cv2.cvtColor(
self.frame_cache[self.thumbnail_data["frame_time"]],
cv2.COLOR_YUV2BGR_I420,
)
except KeyError:
logger.warning(
f"Unable to create jpg because frame {self.thumbnail_data['frame_time']} is not in the cache"
)
return None
if bounding_box:
thickness = 2
color = self.colormap[self.obj_data["label"]]
# draw the bounding boxes on the frame
box = self.thumbnail_data["box"]
draw_box_with_label(
best_frame,
box[0],
box[1],
box[2],
box[3],
self.obj_data["label"],
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}",
thickness=thickness,
color=color,
)
# draw any attributes
for attribute in self.thumbnail_data["attributes"]:
box = attribute["box"]
draw_box_with_label(
best_frame,
box[0],
box[1],
box[2],
box[3],
attribute["label"],
f"{attribute['score']:.0%}",
thickness=thickness,
color=color,
)
if crop:
box = self.thumbnail_data["box"]
box_size = 300
region = calculate_region(
best_frame.shape,
box[0],
box[1],
box[2],
box[3],
box_size,
multiplier=1.1,
)
best_frame = best_frame[region[1] : region[3], region[0] : region[2]]
if height:
width = int(height * best_frame.shape[1] / best_frame.shape[0])
best_frame = cv2.resize(
best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA
)
if timestamp:
color = self.camera_config.timestamp_style.color
draw_timestamp(
best_frame,
self.thumbnail_data["frame_time"],
self.camera_config.timestamp_style.format,
font_effect=self.camera_config.timestamp_style.effect,
font_thickness=self.camera_config.timestamp_style.thickness,
font_color=(color.blue, color.green, color.red),
position=self.camera_config.timestamp_style.position,
)
ret, jpg = cv2.imencode(
".jpg", best_frame, [int(cv2.IMWRITE_JPEG_QUALITY), quality]
)
if ret:
return jpg.tobytes()
else:
return None
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data["label"]
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj.obj_data["area"]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj.obj_data["area"]:
return True
# if the score is lower than the threshold, skip
if obj_settings.threshold > obj.computed_score:
return True
# if the object is not proportionally wide enough
if obj_settings.min_ratio > obj.obj_data["ratio"]:
return True
# if the object is proportionally too wide
if obj_settings.max_ratio < obj.obj_data["ratio"]:
return True
return False
class TrackedObjectAttribute:
def __init__(self, raw_data: tuple) -> None:
self.label = raw_data[0]
self.score = raw_data[1]
self.box = raw_data[2]
self.area = raw_data[3]
self.ratio = raw_data[4]
self.region = raw_data[5]
def get_tracking_data(self) -> dict[str, any]:
"""Return data saved to the object."""
return {
"label": self.label,
"score": self.score,
"box": self.box,
}
def find_best_object(self, objects: list[dict[str, any]]) -> str:
"""Find the best attribute for each object and return its ID."""
best_object_area = None
best_object_id = None
for obj in objects:
if not box_inside(obj["box"], self.box):
continue
object_area = area(obj["box"])
# if multiple objects have the same attribute then they
# are overlapping, it is most likely that the smaller object
# is the one with the attribute
if best_object_area is None:
best_object_area = object_area
best_object_id = obj["id"]
elif object_area < best_object_area:
best_object_area = object_area
best_object_id = obj["id"]
return best_object_id