mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-02-23 00:18:31 +01:00
* use a small yolov9 model for detection * use yolov9 for users without frigate+ and update retention algorithm * new lpr config fields * levenshtein distance package * tweaks * docs
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
from typing import Dict, List, Optional
|
|
|
|
from pydantic import Field
|
|
|
|
from .base import FrigateBaseModel
|
|
|
|
__all__ = [
|
|
"FaceRecognitionConfig",
|
|
"SemanticSearchConfig",
|
|
"LicensePlateRecognitionConfig",
|
|
]
|
|
|
|
|
|
class BirdClassificationConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable bird classification.")
|
|
threshold: float = Field(
|
|
default=0.9,
|
|
title="Minimum classification score required to be considered a match.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
|
|
|
|
class ClassificationConfig(FrigateBaseModel):
|
|
bird: BirdClassificationConfig = Field(
|
|
default_factory=BirdClassificationConfig, title="Bird classification config."
|
|
)
|
|
|
|
|
|
class SemanticSearchConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable semantic search.")
|
|
reindex: Optional[bool] = Field(
|
|
default=False, title="Reindex all detections on startup."
|
|
)
|
|
model_size: str = Field(
|
|
default="small", title="The size of the embeddings model used."
|
|
)
|
|
|
|
|
|
class FaceRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable face recognition.")
|
|
min_score: float = Field(
|
|
title="Minimum face distance score required to save the attempt.",
|
|
default=0.8,
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
threshold: float = Field(
|
|
default=0.9,
|
|
title="Minimum face distance score required to be considered a match.",
|
|
gt=0.0,
|
|
le=1.0,
|
|
)
|
|
min_area: int = Field(
|
|
default=500, title="Min area of face box to consider running face recognition."
|
|
)
|
|
save_attempts: bool = Field(
|
|
default=True, title="Save images of face detections for training."
|
|
)
|
|
|
|
|
|
class LicensePlateRecognitionConfig(FrigateBaseModel):
|
|
enabled: bool = Field(default=False, title="Enable license plate recognition.")
|
|
threshold: float = Field(
|
|
default=0.9,
|
|
title="License plate confidence score required to be added to the object as a sub label.",
|
|
)
|
|
min_area: int = Field(
|
|
default=1000,
|
|
title="Minimum area of license plate to consider running license plate recognition.",
|
|
)
|
|
min_plate_length: int = Field(
|
|
default=4,
|
|
title="Minimum number of characters a license plate must have to be added to the object as a sub label.",
|
|
)
|
|
match_distance: int = Field(
|
|
default=1,
|
|
title="Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate.",
|
|
)
|
|
known_plates: Optional[Dict[str, List[str]]] = Field(
|
|
default={}, title="Known plates to track."
|
|
)
|