blakeblackshear.frigate/frigate/detectors/plugins/hailo8l.py
2025-02-19 19:16:27 +02:00

205 lines
7.4 KiB
Python

import logging
import os
import queue
import threading
import subprocess
import urllib.request
import numpy as np
from hailo_platform import (
HEF,
ConfigureParams,
FormatType,
HailoRTException,
HailoStreamInterface,
VDevice,
HailoSchedulingAlgorithm,
InferVStreams,
InputVStreamParams,
OutputVStreamParams
)
from frigate.detectors.detection_api import DetectionApi
from frigate.detectors.detector_config import BaseDetectorConfig
from pydantic import BaseModel, Field
from typing_extensions import Literal
from typing import Optional
from functools import partial
logger = logging.getLogger(__name__)
DETECTOR_KEY = "hailo8l"
class ModelConfig(BaseModel):
path: str = Field(default=None, title="Model Path")
class HailoDetectorConfig(BaseDetectorConfig):
type: Literal[DETECTOR_KEY]
device: str = Field(default="PCIe", title="Device Type")
url: Optional[str] = Field(default=None, title="Model URL")
dir: Optional[str] = Field(default=None, title="Model Directory")
model: ModelConfig
class HailoAsyncInference:
def __init__(self, config: HailoDetectorConfig):
self.config = config
self.input_queue = queue.Queue()
self.output_queue = queue.Queue()
params = VDevice.create_params()
params.scheduling_algorithm = HailoSchedulingAlgorithm.ROUND_ROBIN
self.target = VDevice(params)
# Initialize HEF
self.hef = HEF(self.config.model.path)
self.infer_model = self.target.create_infer_model(self.config.model.path)
self.infer_model.set_batch_size(1)
def infer(self):
while True:
batch_data = self.input_queue.get()
if batch_data is None:
break
with self.infer_model.configure() as configured_model:
bindings_list = []
for frame in batch_data:
# Create empty output buffers
output_buffers = {
output_info.name: np.empty(
self.infer_model.output(output_info.name).shape,
dtype=np.float32
)
for output_info in self.hef.get_output_vstream_infos()
}
# Create bindings using the configured model
binding = configured_model.create_bindings(output_buffers=output_buffers)
binding.input().set_buffer(frame)
bindings_list.append(binding)
# Run async inference on the configured model
configured_model.run_async(bindings_list, partial(self._callback, batch_data=batch_data))
def _callback(self, completion_info, bindings_list, batch_data):
if completion_info.exception:
logger.error(f"Inference error: {completion_info.exception}")
else:
results = [binding.output().get_buffer() for binding in bindings_list]
self.output_queue.put((batch_data, results))
def stop(self):
self.input_queue.put(None)
class HailoDetector(DetectionApi):
type_key = DETECTOR_KEY
DEFAULT_CACHE_DIR = "/config/model_cache/"
def __init__(self, detector_config: HailoDetectorConfig):
super().__init__(detector_config)
self.config = detector_config
# Get the model path
model_path = self.check_and_prepare_model()
self.config.model.path = model_path
print(self.config.model.path)
# Initialize async inference with the correct model path
self.async_inference = HailoAsyncInference(detector_config)
self.worker_thread = threading.Thread(target=self.async_inference.infer)
self.worker_thread.start()
def check_and_prepare_model(self) -> str:
"""
Check if model exists at specified path, download from URL if needed.
Returns the final model path to use.
"""
# Ensure cache directory exists
if not os.path.exists(self.DEFAULT_CACHE_DIR):
os.makedirs(self.DEFAULT_CACHE_DIR)
model_path = self.config.dir # the directory path of the model
model_url = self.config.url # the url of the model
if (model_path and os.path.isfile(model_path)):
return model_path
if (model_url):
model_filename = os.path.basename(model_url)
model_file_path = os.path.join(self.DEFAULT_CACHE_DIR, model_filename)
if os.path.isfile(model_file_path):
return model_file_path
else:
logger.info(f"Downloading model from URL: {model_url}")
try:
urllib.request.urlretrieve(model_url, model_file_path)
logger.info(f"Model downloaded successfully to: {model_file_path}")
return model_file_path
except Exception as e:
logger.error(f"Failed to download model: {str(e)}")
raise RuntimeError(f"Failed to download model from {model_url}")
raise RuntimeError("No valid model path or URL provided")
def detect_raw(self, tensor_input):
"""
Perform inference and return raw detection results.
"""
preprocessed_input = self.preprocess(tensor_input)
self.async_inference.input_queue.put([preprocessed_input])
try:
batch_data, raw_results = self.async_inference.output_queue.get(timeout=5)
return self.postprocess(raw_results)
except queue.Empty:
logger.warning("Inference timed out")
return np.zeros((20, 6), np.float32)
def preprocess(self, frame):
input_shape = (self.async_inference.hef.get_input_vstream_infos()[0].shape)
resized_frame = np.resize(frame, input_shape)
return resized_frame / 255.0
def postprocess(self, raw_output):
model_type = self.async_inference.config.model.type
if model_type == "ssd_mobilenet_v1":
return self._process_ssd(raw_output)
elif model_type in ["yolov8s", "yolov8m", "yolov6n"]:
return self._process_yolo(raw_output, version=model_type[-1])
else:
logger.error(f"Unsupported model type: {model_type}")
return []
def _process_ssd(self, raw_output):
detections = []
for detection in raw_output[1]:
score = detection[4]
if score >= self.async_inference.config.model.score_threshold:
ymin, xmin, ymax, xmax = detection[:4]
detections.append({
"bounding_box": [xmin, ymin, xmax, ymax],
"score": score,
"class": int(detection[5])
})
return detections
def _process_yolo(self, raw_output, version):
detections = []
for detection in raw_output[1]:
confidence = detection[4]
if confidence >= self.async_inference.config.model.score_threshold:
x, y, w, h = detection[:4]
ymin, xmin, ymax, xmax = y - h / 2, x - w / 2, y + h / 2, x + w / 2
class_id = np.argmax(detection[5:])
detections.append({
"bounding_box": [xmin, ymin, xmax, ymax],
"score": confidence,
"class": class_id
})
return detections
def stop(self):
self.async_inference.stop()
self.worker_thread.join()