mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
c0bd3b362c
* Subclass Process for audio_process * Introduce custom mp.Process subclass In preparation to switch the multiprocessing startup method away from "fork", we cannot rely on os.fork cloning the log state at fork time. Instead, we have to set up logging before we run the business logic of each process. * Make camera_metrics into a class * Make ptz_metrics into a class * Fixed PtzMotionEstimator.ptz_metrics type annotation * Removed pointless variables * Do not start audio processor when no audio cameras are configured
409 lines
15 KiB
Python
409 lines
15 KiB
Python
import logging
|
|
import random
|
|
import string
|
|
|
|
import numpy as np
|
|
from norfair import (
|
|
Detection,
|
|
Drawable,
|
|
OptimizedKalmanFilterFactory,
|
|
Tracker,
|
|
draw_boxes,
|
|
)
|
|
from norfair.drawing.drawer import Drawer
|
|
|
|
from frigate.camera import PTZMetrics
|
|
from frigate.config import CameraConfig
|
|
from frigate.ptz.autotrack import PtzMotionEstimator
|
|
from frigate.track import ObjectTracker
|
|
from frigate.util.image import intersection_over_union
|
|
from frigate.util.object import average_boxes, median_of_boxes
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
THRESHOLD_KNOWN_ACTIVE_IOU = 0.2
|
|
THRESHOLD_STATIONARY_CHECK_IOU = 0.6
|
|
THRESHOLD_ACTIVE_CHECK_IOU = 0.9
|
|
MAX_STATIONARY_HISTORY = 10
|
|
|
|
|
|
# Normalizes distance from estimate relative to object size
|
|
# Other ideas:
|
|
# - if estimates are inaccurate for first N detections, compare with last_detection (may be fine)
|
|
# - could be variable based on time since last_detection
|
|
# - include estimated velocity in the distance (car driving by of a parked car)
|
|
# - include some visual similarity factor in the distance for occlusions
|
|
def distance(detection: np.array, estimate: np.array) -> float:
|
|
# ultimately, this should try and estimate distance in 3-dimensional space
|
|
# consider change in location, width, and height
|
|
|
|
estimate_dim = np.diff(estimate, axis=0).flatten()
|
|
detection_dim = np.diff(detection, axis=0).flatten()
|
|
|
|
# get bottom center positions
|
|
detection_position = np.array(
|
|
[np.average(detection[:, 0]), np.max(detection[:, 1])]
|
|
)
|
|
estimate_position = np.array([np.average(estimate[:, 0]), np.max(estimate[:, 1])])
|
|
|
|
distance = (detection_position - estimate_position).astype(float)
|
|
# change in x relative to w
|
|
distance[0] /= estimate_dim[0]
|
|
# change in y relative to h
|
|
distance[1] /= estimate_dim[1]
|
|
|
|
# get ratio of widths and heights
|
|
# normalize to 1
|
|
widths = np.sort([estimate_dim[0], detection_dim[0]])
|
|
heights = np.sort([estimate_dim[1], detection_dim[1]])
|
|
width_ratio = widths[1] / widths[0] - 1.0
|
|
height_ratio = heights[1] / heights[0] - 1.0
|
|
|
|
# change vector is relative x,y change and w,h ratio
|
|
change = np.append(distance, np.array([width_ratio, height_ratio]))
|
|
|
|
# calculate euclidean distance of the change vector
|
|
return np.linalg.norm(change)
|
|
|
|
|
|
def frigate_distance(detection: Detection, tracked_object) -> float:
|
|
return distance(detection.points, tracked_object.estimate)
|
|
|
|
|
|
class NorfairTracker(ObjectTracker):
|
|
def __init__(
|
|
self,
|
|
config: CameraConfig,
|
|
ptz_metrics: PTZMetrics,
|
|
):
|
|
self.tracked_objects = {}
|
|
self.untracked_object_boxes: list[list[int]] = []
|
|
self.disappeared = {}
|
|
self.positions = {}
|
|
self.stationary_box_history: dict[str, list[list[int, int, int, int]]] = {}
|
|
self.camera_config = config
|
|
self.detect_config = config.detect
|
|
self.ptz_metrics = ptz_metrics
|
|
self.ptz_motion_estimator = {}
|
|
self.camera_name = config.name
|
|
self.track_id_map = {}
|
|
# TODO: could also initialize a tracker per object class if there
|
|
# was a good reason to have different distance calculations
|
|
self.tracker = Tracker(
|
|
distance_function=frigate_distance,
|
|
distance_threshold=2.5,
|
|
initialization_delay=self.detect_config.min_initialized,
|
|
hit_counter_max=self.detect_config.max_disappeared,
|
|
# use default filter factory with custom values
|
|
# R is the multiplier for the sensor measurement noise matrix, default of 4.0
|
|
# lowering R means that we trust the position of the bounding boxes more
|
|
# testing shows that the prediction was being relied on a bit too much
|
|
# TODO: could use different kalman filter values along with
|
|
# the different tracker per object class
|
|
filter_factory=OptimizedKalmanFilterFactory(R=3.4),
|
|
)
|
|
if self.ptz_metrics.autotracker_enabled.value:
|
|
self.ptz_motion_estimator = PtzMotionEstimator(
|
|
self.camera_config, self.ptz_metrics
|
|
)
|
|
|
|
def register(self, track_id, obj):
|
|
rand_id = "".join(random.choices(string.ascii_lowercase + string.digits, k=6))
|
|
id = f"{obj['frame_time']}-{rand_id}"
|
|
self.track_id_map[track_id] = id
|
|
obj["id"] = id
|
|
obj["start_time"] = obj["frame_time"]
|
|
obj["motionless_count"] = 0
|
|
obj["position_changes"] = 0
|
|
obj["score_history"] = [
|
|
p.data["score"]
|
|
for p in next(
|
|
(o for o in self.tracker.tracked_objects if o.global_id == track_id)
|
|
).past_detections
|
|
]
|
|
self.tracked_objects[id] = obj
|
|
self.disappeared[id] = 0
|
|
self.positions[id] = {
|
|
"xmins": [],
|
|
"ymins": [],
|
|
"xmaxs": [],
|
|
"ymaxs": [],
|
|
"xmin": 0,
|
|
"ymin": 0,
|
|
"xmax": self.detect_config.width,
|
|
"ymax": self.detect_config.height,
|
|
}
|
|
self.stationary_box_history[id] = []
|
|
|
|
def deregister(self, id, track_id):
|
|
del self.tracked_objects[id]
|
|
del self.disappeared[id]
|
|
self.tracker.tracked_objects = [
|
|
o for o in self.tracker.tracked_objects if o.global_id != track_id
|
|
]
|
|
del self.track_id_map[track_id]
|
|
|
|
# tracks the current position of the object based on the last N bounding boxes
|
|
# returns False if the object has moved outside its previous position
|
|
def update_position(self, id: str, box: list[int, int, int, int], stationary: bool):
|
|
xmin, ymin, xmax, ymax = box
|
|
position = self.positions[id]
|
|
self.stationary_box_history[id].append(box)
|
|
|
|
if len(self.stationary_box_history[id]) > MAX_STATIONARY_HISTORY:
|
|
self.stationary_box_history[id] = self.stationary_box_history[id][
|
|
-MAX_STATIONARY_HISTORY:
|
|
]
|
|
|
|
avg_iou = intersection_over_union(
|
|
box, average_boxes(self.stationary_box_history[id])
|
|
)
|
|
|
|
# object has minimal or zero iou
|
|
# assume object is active
|
|
if avg_iou < THRESHOLD_KNOWN_ACTIVE_IOU:
|
|
self.positions[id] = {
|
|
"xmins": [xmin],
|
|
"ymins": [ymin],
|
|
"xmaxs": [xmax],
|
|
"ymaxs": [ymax],
|
|
"xmin": xmin,
|
|
"ymin": ymin,
|
|
"xmax": xmax,
|
|
"ymax": ymax,
|
|
}
|
|
return False
|
|
|
|
threshold = (
|
|
THRESHOLD_STATIONARY_CHECK_IOU if stationary else THRESHOLD_ACTIVE_CHECK_IOU
|
|
)
|
|
|
|
# object has iou below threshold, check median to reduce outliers
|
|
if avg_iou < threshold:
|
|
median_iou = intersection_over_union(
|
|
(
|
|
position["xmin"],
|
|
position["ymin"],
|
|
position["xmax"],
|
|
position["ymax"],
|
|
),
|
|
median_of_boxes(self.stationary_box_history[id]),
|
|
)
|
|
|
|
# if the median iou drops below the threshold
|
|
# assume object is no longer stationary
|
|
if median_iou < threshold:
|
|
self.positions[id] = {
|
|
"xmins": [xmin],
|
|
"ymins": [ymin],
|
|
"xmaxs": [xmax],
|
|
"ymaxs": [ymax],
|
|
"xmin": xmin,
|
|
"ymin": ymin,
|
|
"xmax": xmax,
|
|
"ymax": ymax,
|
|
}
|
|
return False
|
|
|
|
# if there are less than 10 entries for the position, add the bounding box
|
|
# and recompute the position box
|
|
if len(position["xmins"]) < 10:
|
|
position["xmins"].append(xmin)
|
|
position["ymins"].append(ymin)
|
|
position["xmaxs"].append(xmax)
|
|
position["ymaxs"].append(ymax)
|
|
# by using percentiles here, we hopefully remove outliers
|
|
position["xmin"] = np.percentile(position["xmins"], 15)
|
|
position["ymin"] = np.percentile(position["ymins"], 15)
|
|
position["xmax"] = np.percentile(position["xmaxs"], 85)
|
|
position["ymax"] = np.percentile(position["ymaxs"], 85)
|
|
|
|
return True
|
|
|
|
def is_expired(self, id):
|
|
obj = self.tracked_objects[id]
|
|
# get the max frames for this label type or the default
|
|
max_frames = self.detect_config.stationary.max_frames.objects.get(
|
|
obj["label"], self.detect_config.stationary.max_frames.default
|
|
)
|
|
|
|
# if there is no max_frames for this label type, continue
|
|
if max_frames is None:
|
|
return False
|
|
|
|
# if the object has exceeded the max_frames setting, deregister
|
|
if (
|
|
obj["motionless_count"] - self.detect_config.stationary.threshold
|
|
> max_frames
|
|
):
|
|
return True
|
|
|
|
return False
|
|
|
|
def update(self, track_id, obj):
|
|
id = self.track_id_map[track_id]
|
|
self.disappeared[id] = 0
|
|
stationary = (
|
|
self.tracked_objects[id]["motionless_count"]
|
|
>= self.detect_config.stationary.threshold
|
|
)
|
|
# update the motionless count if the object has not moved to a new position
|
|
if self.update_position(id, obj["box"], stationary):
|
|
self.tracked_objects[id]["motionless_count"] += 1
|
|
if self.is_expired(id):
|
|
self.deregister(id, track_id)
|
|
return
|
|
else:
|
|
# register the first position change and then only increment if
|
|
# the object was previously stationary
|
|
if (
|
|
self.tracked_objects[id]["position_changes"] == 0
|
|
or self.tracked_objects[id]["motionless_count"]
|
|
>= self.detect_config.stationary.threshold
|
|
):
|
|
self.tracked_objects[id]["position_changes"] += 1
|
|
self.tracked_objects[id]["motionless_count"] = 0
|
|
self.stationary_box_history[id] = []
|
|
|
|
self.tracked_objects[id].update(obj)
|
|
|
|
def update_frame_times(self, frame_time):
|
|
# if the object was there in the last frame, assume it's still there
|
|
detections = [
|
|
(
|
|
obj["label"],
|
|
obj["score"],
|
|
obj["box"],
|
|
obj["area"],
|
|
obj["ratio"],
|
|
obj["region"],
|
|
)
|
|
for id, obj in self.tracked_objects.items()
|
|
if self.disappeared[id] == 0
|
|
]
|
|
self.match_and_update(frame_time, detections=detections)
|
|
|
|
def match_and_update(self, frame_time, detections):
|
|
norfair_detections = []
|
|
|
|
for obj in detections:
|
|
# centroid is used for other things downstream
|
|
centroid_x = int((obj[2][0] + obj[2][2]) / 2.0)
|
|
centroid_y = int((obj[2][1] + obj[2][3]) / 2.0)
|
|
|
|
# track based on top,left and bottom,right corners instead of centroid
|
|
points = np.array([[obj[2][0], obj[2][1]], [obj[2][2], obj[2][3]]])
|
|
|
|
norfair_detections.append(
|
|
Detection(
|
|
points=points,
|
|
label=obj[0],
|
|
data={
|
|
"label": obj[0],
|
|
"score": obj[1],
|
|
"box": obj[2],
|
|
"area": obj[3],
|
|
"ratio": obj[4],
|
|
"region": obj[5],
|
|
"frame_time": frame_time,
|
|
"centroid": (centroid_x, centroid_y),
|
|
},
|
|
)
|
|
)
|
|
|
|
coord_transformations = None
|
|
|
|
if self.ptz_metrics.autotracker_enabled.value:
|
|
# we must have been enabled by mqtt, so set up the estimator
|
|
if not self.ptz_motion_estimator:
|
|
self.ptz_motion_estimator = PtzMotionEstimator(
|
|
self.camera_config, self.ptz_metrics
|
|
)
|
|
|
|
coord_transformations = self.ptz_motion_estimator.motion_estimator(
|
|
detections, frame_time, self.camera_name
|
|
)
|
|
|
|
tracked_objects = self.tracker.update(
|
|
detections=norfair_detections, coord_transformations=coord_transformations
|
|
)
|
|
|
|
# update or create new tracks
|
|
active_ids = []
|
|
for t in tracked_objects:
|
|
estimate = tuple(t.estimate.flatten().astype(int))
|
|
# keep the estimate within the bounds of the image
|
|
estimate = (
|
|
max(0, estimate[0]),
|
|
max(0, estimate[1]),
|
|
min(self.detect_config.width - 1, estimate[2]),
|
|
min(self.detect_config.height - 1, estimate[3]),
|
|
)
|
|
obj = {
|
|
**t.last_detection.data,
|
|
"estimate": estimate,
|
|
"estimate_velocity": t.estimate_velocity,
|
|
}
|
|
active_ids.append(t.global_id)
|
|
if t.global_id not in self.track_id_map:
|
|
self.register(t.global_id, obj)
|
|
# if there wasn't a detection in this frame, increment disappeared
|
|
elif t.last_detection.data["frame_time"] != frame_time:
|
|
id = self.track_id_map[t.global_id]
|
|
self.disappeared[id] += 1
|
|
# sometimes the estimate gets way off
|
|
# only update if the upper left corner is actually upper left
|
|
if estimate[0] < estimate[2] and estimate[1] < estimate[3]:
|
|
self.tracked_objects[id]["estimate"] = obj["estimate"]
|
|
# else update it
|
|
else:
|
|
self.update(t.global_id, obj)
|
|
|
|
# clear expired tracks
|
|
expired_ids = [k for k in self.track_id_map.keys() if k not in active_ids]
|
|
for e_id in expired_ids:
|
|
self.deregister(self.track_id_map[e_id], e_id)
|
|
|
|
# update list of object boxes that don't have a tracked object yet
|
|
tracked_object_boxes = [obj["box"] for obj in self.tracked_objects.values()]
|
|
self.untracked_object_boxes = [
|
|
o[2] for o in detections if o[2] not in tracked_object_boxes
|
|
]
|
|
|
|
def debug_draw(self, frame, frame_time):
|
|
active_detections = [
|
|
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
|
for obj in self.tracker.tracked_objects
|
|
if obj.last_detection.data["frame_time"] == frame_time
|
|
]
|
|
missing_detections = [
|
|
Drawable(id=obj.id, points=obj.last_detection.points, label=obj.label)
|
|
for obj in self.tracker.tracked_objects
|
|
if obj.last_detection.data["frame_time"] != frame_time
|
|
]
|
|
# draw the estimated bounding box
|
|
draw_boxes(frame, self.tracker.tracked_objects, color="green", draw_ids=True)
|
|
# draw the detections that were detected in the current frame
|
|
draw_boxes(frame, active_detections, color="blue", draw_ids=True)
|
|
# draw the detections that are missing in the current frame
|
|
draw_boxes(frame, missing_detections, color="red", draw_ids=True)
|
|
|
|
# draw the distance calculation for the last detection
|
|
# estimate vs detection
|
|
for obj in self.tracker.tracked_objects:
|
|
ld = obj.last_detection
|
|
# bottom right
|
|
text_anchor = (
|
|
ld.points[1, 0],
|
|
ld.points[1, 1],
|
|
)
|
|
frame = Drawer.text(
|
|
frame,
|
|
f"{obj.id}: {str(obj.last_distance)}",
|
|
position=text_anchor,
|
|
size=None,
|
|
color=(255, 0, 0),
|
|
thickness=None,
|
|
)
|