blakeblackshear.frigate/frigate/util.py
Cody Cutrer ef14a43930
optimize frame-per-second calculations (#6887)
* optimize frame-per-second calculations

FPS is never calculated over differing periods for even given
counter. By only storing timestamps within the period that is
used, we avoid having to iterate 1000 entries every time it's
re-calculated (multiple times per second). 1000 entries would
normally only be needed if something is running at 100fps. A
more common speed - anywhere from 5 to 30fps, only needs 50
to 300 entries.

This isn't a huge improvement in the grand scheme, but when motion
detection is disabled, it takes nearly as much time in a flamegraph
as actually transferring the video frame.

* fix python checks
2023-06-28 05:55:53 -05:00

1221 lines
37 KiB
Python
Executable File

import copy
import datetime
import json
import logging
import os
import re
import shlex
import signal
import subprocess as sp
import traceback
import urllib.parse
from abc import ABC, abstractmethod
from collections import Counter
from collections.abc import Mapping
from multiprocessing import shared_memory
from typing import Any, AnyStr, Optional, Tuple
import cv2
import numpy as np
import psutil
import py3nvml.py3nvml as nvml
import pytz
import yaml
from frigate.const import REGEX_HTTP_CAMERA_USER_PASS, REGEX_RTSP_CAMERA_USER_PASS
logger = logging.getLogger(__name__)
def deep_merge(dct1: dict, dct2: dict, override=False, merge_lists=False) -> dict:
"""
:param dct1: First dict to merge
:param dct2: Second dict to merge
:param override: if same key exists in both dictionaries, should override? otherwise ignore. (default=True)
:return: The merge dictionary
"""
merged = copy.deepcopy(dct1)
for k, v2 in dct2.items():
if k in merged:
v1 = merged[k]
if isinstance(v1, dict) and isinstance(v2, Mapping):
merged[k] = deep_merge(v1, v2, override)
elif isinstance(v1, list) and isinstance(v2, list):
if merge_lists:
merged[k] = v1 + v2
else:
if override:
merged[k] = copy.deepcopy(v2)
else:
merged[k] = copy.deepcopy(v2)
return merged
def load_config_with_no_duplicates(raw_config) -> dict:
"""Get config ensuring duplicate keys are not allowed."""
# https://stackoverflow.com/a/71751051
class PreserveDuplicatesLoader(yaml.loader.Loader):
pass
def map_constructor(loader, node, deep=False):
keys = [loader.construct_object(node, deep=deep) for node, _ in node.value]
vals = [loader.construct_object(node, deep=deep) for _, node in node.value]
key_count = Counter(keys)
data = {}
for key, val in zip(keys, vals):
if key_count[key] > 1:
raise ValueError(
f"Config input {key} is defined multiple times for the same field, this is not allowed."
)
else:
data[key] = val
return data
PreserveDuplicatesLoader.add_constructor(
yaml.resolver.BaseResolver.DEFAULT_MAPPING_TAG, map_constructor
)
return yaml.load(raw_config, PreserveDuplicatesLoader)
def draw_timestamp(
frame,
timestamp,
timestamp_format,
font_effect=None,
font_thickness=2,
font_color=(255, 255, 255),
position="tl",
):
time_to_show = datetime.datetime.fromtimestamp(timestamp).strftime(timestamp_format)
# calculate a dynamic font size
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=1.0,
thickness=font_thickness,
)
text_width = size[0][0]
desired_size = max(150, 0.33 * frame.shape[1])
font_scale = desired_size / text_width
# calculate the actual size with the dynamic scale
size = cv2.getTextSize(
time_to_show,
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
thickness=font_thickness,
)
image_width = frame.shape[1]
image_height = frame.shape[0]
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
if position == "tl":
text_offset_x = 0
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "tr":
text_offset_x = image_width - text_width
text_offset_y = 0 if 0 < line_height else 0 - (line_height + 8)
elif position == "bl":
text_offset_x = 0
text_offset_y = image_height - (line_height + 8)
elif position == "br":
text_offset_x = image_width - text_width
text_offset_y = image_height - (line_height + 8)
if font_effect == "solid":
# make the coords of the box with a small padding of two pixels
timestamp_box_coords = np.array(
[
[text_offset_x, text_offset_y],
[text_offset_x + text_width, text_offset_y],
[text_offset_x + text_width, text_offset_y + line_height + 8],
[text_offset_x, text_offset_y + line_height + 8],
]
)
cv2.fillPoly(
frame,
[timestamp_box_coords],
# inverse color of text for background for max. contrast
(255 - font_color[0], 255 - font_color[1], 255 - font_color[2]),
)
elif font_effect == "shadow":
cv2.putText(
frame,
time_to_show,
(text_offset_x + 3, text_offset_y + line_height),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
color=(255 - font_color[0], 255 - font_color[1], 255 - font_color[2]),
thickness=font_thickness,
)
cv2.putText(
frame,
time_to_show,
(text_offset_x, text_offset_y + line_height - 3),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale,
color=font_color,
thickness=font_thickness,
)
def draw_box_with_label(
frame,
x_min,
y_min,
x_max,
y_max,
label,
info,
thickness=2,
color=None,
position="ul",
):
if color is None:
color = (0, 0, 255)
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == "ul":
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "ur":
text_offset_x = x_max - (text_width + 8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height + 8)
elif position == "bl":
text_offset_x = x_min
text_offset_y = y_max
elif position == "br":
text_offset_x = x_max - (text_width + 8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = (
(text_offset_x, text_offset_y),
(text_offset_x + text_width + 2, text_offset_y + line_height),
)
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(
frame,
display_text,
(text_offset_x, text_offset_y + line_height - 3),
font,
fontScale=font_scale,
color=(0, 0, 0),
thickness=2,
)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, model_size, multiplier=2):
# size is the longest edge and divisible by 4
size = int((max(xmax - xmin, ymax - ymin) * multiplier) // 4 * 4)
# dont go any smaller than the model_size
if size < model_size:
size = model_size
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax - xmin) / 2.0 + xmin - size / 2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1] - size):
x_offset = max(0, (frame_shape[1] - size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax - ymin) / 2.0 + ymin - size / 2.0)
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0] - size):
y_offset = max(0, (frame_shape[0] - size))
return (x_offset, y_offset, x_offset + size, y_offset + size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0] // 3 * 2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width // 2 # width of the uv channels
uv_height = frame_height // 4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0] // 2 # x offset of the uv channels
uv_y_offset = crop[1] // 4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0]) // 2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1]) // 4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (crop[0], crop[1], crop[0] + uv_crop_width * 2, crop[1] + uv_crop_height * 4)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height,
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height,
)
return y, u1, u2, v1, v2
def yuv_crop_and_resize(frame, region, height=None):
# Crops and resizes a YUV frame while maintaining aspect ratio
# https://stackoverflow.com/a/57022634
height = frame.shape[0] // 3 * 2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset // 2
uv_channel_y_offset = y_channel_y_offset // 4
# create the yuv region frame
# make sure the size is a multiple of 4
# TODO: this should be based on the size after resize now
size = (region[3] - region[1]) // 4 * 4
yuv_cropped_frame = np.zeros((size + size // 2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size, 0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset : y_channel_y_offset + y[3] - y[1],
y_channel_x_offset : y_channel_x_offset + y[2] - y[0],
] = frame[y[1] : y[3], y[0] : y[2]]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[u1[1] : u1[3], u1[0] : u1[2]]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset : size + uv_channel_y_offset + uv_crop_height,
size // 2
+ uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[u2[1] : u2[3], u2[0] : u2[2]]
# copy v1
yuv_cropped_frame[
size
+ size // 4
+ uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
0 + uv_channel_x_offset : 0 + uv_channel_x_offset + uv_crop_width,
] = frame[v1[1] : v1[3], v1[0] : v1[2]]
# copy v2
yuv_cropped_frame[
size
+ size // 4
+ uv_channel_y_offset : size
+ size // 4
+ uv_channel_y_offset
+ uv_crop_height,
size // 2
+ uv_channel_x_offset : size // 2
+ uv_channel_x_offset
+ uv_crop_width,
] = frame[v2[1] : v2[3], v2[0] : v2[2]]
return yuv_cropped_frame
def yuv_to_3_channel_yuv(yuv_frame):
height = yuv_frame.shape[0] // 3 * 2
width = yuv_frame.shape[1]
# flatten the image into array
yuv_data = yuv_frame.ravel()
# create a numpy array to hold all the 3 chanel yuv data
all_yuv_data = np.empty((height, width, 3), dtype=np.uint8)
y_count = height * width
uv_count = y_count // 4
# copy the y_channel
all_yuv_data[:, :, 0] = yuv_data[0:y_count].reshape((height, width))
# copy the u channel doubling each dimension
all_yuv_data[:, :, 1] = np.repeat(
np.reshape(
np.repeat(yuv_data[y_count : y_count + uv_count], repeats=2, axis=0),
(height // 2, width),
),
repeats=2,
axis=0,
)
# copy the v channel doubling each dimension
all_yuv_data[:, :, 2] = np.repeat(
np.reshape(
np.repeat(
yuv_data[y_count + uv_count : y_count + uv_count + uv_count],
repeats=2,
axis=0,
),
(height // 2, width),
),
repeats=2,
axis=0,
)
return all_yuv_data
def copy_yuv_to_position(
destination_frame,
destination_offset,
destination_shape,
source_frame=None,
source_channel_dim=None,
):
# get the coordinates of the channels for this position in the layout
y, u1, u2, v1, v2 = get_yuv_crop(
destination_frame.shape,
(
destination_offset[1],
destination_offset[0],
destination_offset[1] + destination_shape[1],
destination_offset[0] + destination_shape[0],
),
)
# clear y
destination_frame[
y[1] : y[3],
y[0] : y[2],
] = 16
# clear u1
destination_frame[u1[1] : u1[3], u1[0] : u1[2]] = 128
# clear u2
destination_frame[u2[1] : u2[3], u2[0] : u2[2]] = 128
# clear v1
destination_frame[v1[1] : v1[3], v1[0] : v1[2]] = 128
# clear v2
destination_frame[v2[1] : v2[3], v2[0] : v2[2]] = 128
if source_frame is not None:
# calculate the resized frame, maintaining the aspect ratio
source_aspect_ratio = source_frame.shape[1] / (source_frame.shape[0] // 3 * 2)
dest_aspect_ratio = destination_shape[1] / destination_shape[0]
if source_aspect_ratio <= dest_aspect_ratio:
y_resize_height = int(destination_shape[0] // 4 * 4)
y_resize_width = int((y_resize_height * source_aspect_ratio) // 4 * 4)
else:
y_resize_width = int(destination_shape[1] // 4 * 4)
y_resize_height = int((y_resize_width / source_aspect_ratio) // 4 * 4)
uv_resize_width = int(y_resize_width // 2)
uv_resize_height = int(y_resize_height // 4)
y_y_offset = int((destination_shape[0] - y_resize_height) / 4 // 4 * 4)
y_x_offset = int((destination_shape[1] - y_resize_width) / 2 // 4 * 4)
uv_y_offset = y_y_offset // 4
uv_x_offset = y_x_offset // 2
interpolation = cv2.INTER_LINEAR
# resize/copy y channel
destination_frame[
y[1] + y_y_offset : y[1] + y_y_offset + y_resize_height,
y[0] + y_x_offset : y[0] + y_x_offset + y_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["y"][1] : source_channel_dim["y"][3],
source_channel_dim["y"][0] : source_channel_dim["y"][2],
],
dsize=(y_resize_width, y_resize_height),
interpolation=interpolation,
)
# resize/copy u1
destination_frame[
u1[1] + uv_y_offset : u1[1] + uv_y_offset + uv_resize_height,
u1[0] + uv_x_offset : u1[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["u1"][1] : source_channel_dim["u1"][3],
source_channel_dim["u1"][0] : source_channel_dim["u1"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy u2
destination_frame[
u2[1] + uv_y_offset : u2[1] + uv_y_offset + uv_resize_height,
u2[0] + uv_x_offset : u2[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["u2"][1] : source_channel_dim["u2"][3],
source_channel_dim["u2"][0] : source_channel_dim["u2"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy v1
destination_frame[
v1[1] + uv_y_offset : v1[1] + uv_y_offset + uv_resize_height,
v1[0] + uv_x_offset : v1[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["v1"][1] : source_channel_dim["v1"][3],
source_channel_dim["v1"][0] : source_channel_dim["v1"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
# resize/copy v2
destination_frame[
v2[1] + uv_y_offset : v2[1] + uv_y_offset + uv_resize_height,
v2[0] + uv_x_offset : v2[0] + uv_x_offset + uv_resize_width,
] = cv2.resize(
source_frame[
source_channel_dim["v2"][1] : source_channel_dim["v2"][3],
source_channel_dim["v2"][0] : source_channel_dim["v2"][2],
],
dsize=(uv_resize_width, uv_resize_height),
interpolation=interpolation,
)
def yuv_region_2_yuv(frame, region):
try:
# TODO: does this copy the numpy array?
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return yuv_to_3_channel_yuv(yuv_cropped_frame)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def yuv_region_2_rgb(frame, region):
try:
# TODO: does this copy the numpy array?
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def yuv_region_2_bgr(frame, region):
try:
yuv_cropped_frame = yuv_crop_and_resize(frame, region)
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2BGR_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b) -> Optional[list[int]]:
"""Return intersection box or None if boxes do not intersect."""
if (
box_a[2] < box_b[0]
or box_a[0] > box_b[2]
or box_a[1] > box_b[3]
or box_a[3] < box_b[1]
):
return None
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3]),
)
def area(box):
return (box[2] - box[0] + 1) * (box[3] - box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
if intersect is None:
return 0.0
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(
0, intersect[3] - intersect[1] + 1
)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[5]
if (
(region[0] > 5 and box[0] - region[0] <= 5)
or (region[1] > 5 and box[1] - region[1] <= 5)
or (frame_shape[1] - region[2] > 5 and region[2] - box[2] <= 5)
or (frame_shape[0] - region[3] > 5 and region[3] - box[3] <= 5)
):
return True
else:
return False
def restart_frigate():
proc = psutil.Process(1)
# if this is running via s6, sigterm pid 1
if proc.name() == "s6-svscan":
proc.terminate()
# otherwise, just try and exit frigate
else:
os.kill(os.getpid(), signal.SIGTERM)
class EventsPerSecond:
def __init__(self, max_events=1000, last_n_seconds=10):
self._start = None
self._max_events = max_events
self._last_n_seconds = last_n_seconds
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
def update(self):
now = datetime.datetime.now().timestamp()
if self._start is None:
self._start = now
self._timestamps.append(now)
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events + 100:
self._timestamps = self._timestamps[(1 - self._max_events) :]
self.expire_timestamps(now)
def eps(self):
now = datetime.datetime.now().timestamp()
if self._start is None:
self._start = now
# compute the (approximate) events in the last n seconds
self.expire_timestamps(now)
seconds = min(now - self._start, self._last_n_seconds)
# avoid divide by zero
if seconds == 0:
seconds = 1
return len(self._timestamps) / seconds
# remove aged out timestamps
def expire_timestamps(self, now):
threshold = now - self._last_n_seconds
while self._timestamps and self._timestamps[0] < threshold:
del self._timestamps[0]
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)
def create_mask(frame_shape, mask):
mask_img = np.zeros(frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
add_mask(m, mask_img)
elif isinstance(mask, str):
add_mask(mask, mask_img)
return mask_img
def add_mask(mask, mask_img):
points = mask.split(",")
contour = np.array(
[[int(points[i]), int(points[i + 1])] for i in range(0, len(points), 2)]
)
cv2.fillPoly(mask_img, pts=[contour], color=(0))
def load_labels(path, encoding="utf-8"):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, "r", encoding=encoding) as f:
labels = {index: "unknown" for index in range(91)}
lines = f.readlines()
if not lines:
return {}
if lines[0].split(" ", maxsplit=1)[0].isdigit():
pairs = [line.split(" ", maxsplit=1) for line in lines]
labels.update({int(index): label.strip() for index, label in pairs})
else:
labels.update({index: line.strip() for index, line in enumerate(lines)})
return labels
def clean_camera_user_pass(line: str) -> str:
"""Removes user and password from line."""
if "rtsp://" in line:
return re.sub(REGEX_RTSP_CAMERA_USER_PASS, "://*:*@", line)
else:
return re.sub(REGEX_HTTP_CAMERA_USER_PASS, "user=*&password=*", line)
def escape_special_characters(path: str) -> str:
"""Cleans reserved characters to encodings for ffmpeg."""
try:
found = re.search(REGEX_RTSP_CAMERA_USER_PASS, path).group(0)[3:-1]
pw = found[(found.index(":") + 1) :]
return path.replace(pw, urllib.parse.quote_plus(pw))
except AttributeError:
# path does not have user:pass
return path
def get_cgroups_version() -> str:
"""Determine what version of cgroups is enabled."""
cgroup_path = "/sys/fs/cgroup"
if not os.path.ismount(cgroup_path):
logger.debug(f"{cgroup_path} is not a mount point.")
return "unknown"
try:
with open("/proc/mounts", "r") as f:
mounts = f.readlines()
for mount in mounts:
mount_info = mount.split()
if mount_info[1] == cgroup_path:
fs_type = mount_info[2]
if fs_type == "cgroup2fs" or fs_type == "cgroup2":
return "cgroup2"
elif fs_type == "tmpfs":
return "cgroup"
else:
logger.debug(
f"Could not determine cgroups version: unhandled filesystem {fs_type}"
)
break
except Exception as e:
logger.debug(f"Could not determine cgroups version: {e}")
return "unknown"
def get_docker_memlimit_bytes() -> int:
"""Get mem limit in bytes set in docker if present. Returns -1 if no limit detected."""
# check running a supported cgroups version
if get_cgroups_version() == "cgroup2":
memlimit_path = "/sys/fs/cgroup/memory.max"
try:
with open(memlimit_path, "r") as f:
value = f.read().strip()
if value.isnumeric():
return int(value)
elif value.lower() == "max":
return -1
except Exception as e:
logger.debug(f"Unable to get docker memlimit: {e}")
return -1
def get_cpu_stats() -> dict[str, dict]:
"""Get cpu usages for each process id"""
usages = {}
docker_memlimit = get_docker_memlimit_bytes() / 1024
total_mem = os.sysconf("SC_PAGE_SIZE") * os.sysconf("SC_PHYS_PAGES") / 1024
for process in psutil.process_iter(["pid", "name", "cpu_percent", "cmdline"]):
pid = process.info["pid"]
try:
cpu_percent = process.info["cpu_percent"]
cmdline = process.info["cmdline"]
with open(f"/proc/{pid}/stat", "r") as f:
stats = f.readline().split()
utime = int(stats[13])
stime = int(stats[14])
starttime = int(stats[21])
with open("/proc/uptime") as f:
system_uptime_sec = int(float(f.read().split()[0]))
clk_tck = os.sysconf(os.sysconf_names["SC_CLK_TCK"])
process_utime_sec = utime // clk_tck
process_stime_sec = stime // clk_tck
process_starttime_sec = starttime // clk_tck
process_elapsed_sec = system_uptime_sec - process_starttime_sec
process_usage_sec = process_utime_sec + process_stime_sec
cpu_average_usage = process_usage_sec * 100 // process_elapsed_sec
with open(f"/proc/{pid}/statm", "r") as f:
mem_stats = f.readline().split()
mem_res = int(mem_stats[1]) * os.sysconf("SC_PAGE_SIZE") / 1024
if docker_memlimit > 0:
mem_pct = round((mem_res / docker_memlimit) * 100, 1)
else:
mem_pct = round((mem_res / total_mem) * 100, 1)
usages[pid] = {
"cpu": str(cpu_percent),
"cpu_average": str(round(cpu_average_usage, 2)),
"mem": f"{mem_pct}",
"cmdline": " ".join(cmdline),
}
except Exception:
continue
return usages
def get_physical_interfaces(interfaces) -> list:
with open("/proc/net/dev", "r") as file:
lines = file.readlines()
physical_interfaces = []
for line in lines:
if ":" in line:
interface = line.split(":")[0].strip()
for int in interfaces:
if interface.startswith(int):
physical_interfaces.append(interface)
return physical_interfaces
def get_bandwidth_stats(config) -> dict[str, dict]:
"""Get bandwidth usages for each ffmpeg process id"""
usages = {}
top_command = ["nethogs", "-t", "-v0", "-c5", "-d1"] + get_physical_interfaces(
config.telemetry.network_interfaces
)
p = sp.run(
top_command,
encoding="ascii",
capture_output=True,
)
if p.returncode != 0:
return usages
else:
lines = p.stdout.split("\n")
for line in lines:
stats = list(filter(lambda a: a != "", line.strip().split("\t")))
try:
if re.search(
r"(^ffmpeg|\/go2rtc|frigate\.detector\.[a-z]+)/([0-9]+)/", stats[0]
):
process = stats[0].split("/")
usages[process[len(process) - 2]] = {
"bandwidth": round(float(stats[1]) + float(stats[2]), 1),
}
except (IndexError, ValueError):
continue
return usages
def get_amd_gpu_stats() -> dict[str, str]:
"""Get stats using radeontop."""
radeontop_command = ["radeontop", "-d", "-", "-l", "1"]
p = sp.run(
radeontop_command,
encoding="ascii",
capture_output=True,
)
if p.returncode != 0:
logger.error(f"Unable to poll radeon GPU stats: {p.stderr}")
return None
else:
usages = p.stdout.split(",")
results: dict[str, str] = {}
for hw in usages:
if "gpu" in hw:
results["gpu"] = f"{hw.strip().split(' ')[1].replace('%', '')}%"
elif "vram" in hw:
results["mem"] = f"{hw.strip().split(' ')[1].replace('%', '')}%"
return results
def get_intel_gpu_stats() -> dict[str, str]:
"""Get stats using intel_gpu_top."""
intel_gpu_top_command = [
"timeout",
"0.5s",
"intel_gpu_top",
"-J",
"-o",
"-",
"-s",
"1",
]
p = sp.run(
intel_gpu_top_command,
encoding="ascii",
capture_output=True,
)
# timeout has a non-zero returncode when timeout is reached
if p.returncode != 124:
logger.error(f"Unable to poll intel GPU stats: {p.stderr}")
return None
else:
reading = "".join(p.stdout.split())
results: dict[str, str] = {}
# render is used for qsv
render = []
for result in re.findall(r'"Render/3D/0":{[a-z":\d.,%]+}', reading):
packet = json.loads(result[14:])
single = packet.get("busy", 0.0)
render.append(float(single))
if render:
render_avg = sum(render) / len(render)
else:
render_avg = 1
# video is used for vaapi
video = []
for result in re.findall('"Video/\d":{[a-z":\d.,%]+}', reading):
packet = json.loads(result[10:])
single = packet.get("busy", 0.0)
video.append(float(single))
if video:
video_avg = sum(video) / len(video)
else:
video_avg = 1
results["gpu"] = f"{round((video_avg + render_avg) / 2, 2)}%"
results["mem"] = "-%"
return results
def try_get_info(f, h, default="N/A"):
try:
v = f(h)
except nvml.NVMLError_NotSupported:
v = default
return v
def get_nvidia_gpu_stats() -> dict[int, dict]:
results = {}
try:
nvml.nvmlInit()
deviceCount = nvml.nvmlDeviceGetCount()
for i in range(deviceCount):
handle = nvml.nvmlDeviceGetHandleByIndex(i)
meminfo = try_get_info(nvml.nvmlDeviceGetMemoryInfo, handle)
util = try_get_info(nvml.nvmlDeviceGetUtilizationRates, handle)
if util != "N/A":
gpu_util = util.gpu
else:
gpu_util = 0
if meminfo != "N/A":
gpu_mem_util = meminfo.used / meminfo.total * 100
else:
gpu_mem_util = -1
results[i] = {
"name": nvml.nvmlDeviceGetName(handle),
"gpu": gpu_util,
"mem": gpu_mem_util,
}
except Exception:
pass
finally:
return results
def ffprobe_stream(path: str) -> sp.CompletedProcess:
"""Run ffprobe on stream."""
clean_path = escape_special_characters(path)
ffprobe_cmd = [
"ffprobe",
"-timeout",
"1000000",
"-print_format",
"json",
"-show_entries",
"stream=codec_long_name,width,height,bit_rate,duration,display_aspect_ratio,avg_frame_rate",
"-loglevel",
"quiet",
clean_path,
]
return sp.run(ffprobe_cmd, capture_output=True)
def vainfo_hwaccel(device_name: Optional[str] = None) -> sp.CompletedProcess:
"""Run vainfo."""
ffprobe_cmd = (
["vainfo"]
if not device_name
else ["vainfo", "--display", "drm", "--device", f"/dev/dri/{device_name}"]
)
return sp.run(ffprobe_cmd, capture_output=True)
def get_ffmpeg_arg_list(arg: Any) -> list:
"""Use arg if list or convert to list format."""
return arg if isinstance(arg, list) else shlex.split(arg)
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
pass
@abstractmethod
def get(self, name, timeout_ms=0):
pass
@abstractmethod
def close(self, name):
pass
@abstractmethod
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm
return shm.buf
def get(self, name, shape):
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = shared_memory.SharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
def close(self, name):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]
def get_tz_modifiers(tz_name: str) -> Tuple[str, str]:
seconds_offset = (
datetime.datetime.now(pytz.timezone(tz_name)).utcoffset().total_seconds()
)
hours_offset = int(seconds_offset / 60 / 60)
minutes_offset = int(seconds_offset / 60 - hours_offset * 60)
hour_modifier = f"{hours_offset} hour"
minute_modifier = f"{minutes_offset} minute"
return hour_modifier, minute_modifier
def to_relative_box(
width: int, height: int, box: Tuple[int, int, int, int]
) -> Tuple[int, int, int, int]:
return (
box[0] / width, # x
box[1] / height, # y
(box[2] - box[0]) / width, # w
(box[3] - box[1]) / height, # h
)
def get_video_properties(url, get_duration=False):
def calculate_duration(video: Optional[any]) -> float:
duration = None
if video is not None:
# Get the frames per second (fps) of the video stream
fps = video.get(cv2.CAP_PROP_FPS)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
if fps and total_frames:
duration = total_frames / fps
# if cv2 failed need to use ffprobe
if duration is None:
ffprobe_cmd = [
"ffprobe",
"-v",
"error",
"-show_entries",
"format=duration",
"-of",
"default=noprint_wrappers=1:nokey=1",
f"{url}",
]
p = sp.run(ffprobe_cmd, capture_output=True)
if p.returncode == 0 and p.stdout.decode():
duration = float(p.stdout.decode().strip())
else:
duration = -1
return duration
width = height = 0
try:
# Open the video stream
video = cv2.VideoCapture(url)
# Check if the video stream was opened successfully
if not video.isOpened():
video = None
except Exception:
video = None
result = {}
if get_duration:
result["duration"] = calculate_duration(video)
if video is not None:
# Get the width of frames in the video stream
width = video.get(cv2.CAP_PROP_FRAME_WIDTH)
# Get the height of frames in the video stream
height = video.get(cv2.CAP_PROP_FRAME_HEIGHT)
# Release the video stream
video.release()
result["width"] = round(width)
result["height"] = round(height)
return result