blakeblackshear.frigate/frigate/util/object.py
Nicolas Mowen 8b6e3a0d37
Fix region when no data in grid (#8415)
* Fix region when no data in grid

* Make comment more clear
2023-11-01 23:19:17 +00:00

547 lines
18 KiB
Python

"""Utils for reading and writing object detection data."""
import datetime
import logging
import math
from collections import defaultdict
import cv2
import numpy as np
from peewee import DoesNotExist
from frigate.config import DetectConfig, ModelConfig
from frigate.const import LABEL_CONSOLIDATION_DEFAULT, LABEL_CONSOLIDATION_MAP
from frigate.detectors.detector_config import PixelFormatEnum
from frigate.models import Event, Regions, Timeline
from frigate.util.image import (
area,
calculate_region,
clipped,
intersection,
intersection_over_union,
yuv_region_2_bgr,
yuv_region_2_rgb,
yuv_region_2_yuv,
)
logger = logging.getLogger(__name__)
GRID_SIZE = 8
def get_camera_regions_grid(
name: str, detect: DetectConfig
) -> list[list[dict[str, any]]]:
"""Build a grid of expected region sizes for a camera."""
# get grid from db if available
try:
regions: Regions = Regions.select().where(Regions.camera == name).get()
grid = regions.grid
last_update = regions.last_update
except DoesNotExist:
grid = []
for x in range(GRID_SIZE):
row = []
for y in range(GRID_SIZE):
row.append({"sizes": []})
grid.append(row)
last_update = 0
# get events for timeline entries
events = (
Event.select(Event.id)
.where(Event.camera == name)
.where((Event.false_positive == None) | (Event.false_positive == False))
.where(Event.start_time > last_update)
)
valid_event_ids = [e["id"] for e in events.dicts()]
logger.debug(f"Found {len(valid_event_ids)} new events for {name}")
# no new events, return as is
if not valid_event_ids:
return grid
new_update = datetime.datetime.now().timestamp()
timeline = (
Timeline.select(
*[
Timeline.camera,
Timeline.source,
Timeline.data,
]
)
.where(Timeline.source_id << valid_event_ids)
.limit(10000)
.dicts()
)
logger.debug(f"Found {len(timeline)} new entries for {name}")
width = detect.width
height = detect.height
for t in timeline:
if t.get("source") != "tracked_object":
continue
box = t["data"]["box"]
# calculate centroid position
x = box[0] + (box[2] / 2)
y = box[1] + (box[3] / 2)
x_pos = int(x * GRID_SIZE)
y_pos = int(y * GRID_SIZE)
calculated_region = calculate_region(
(height, width),
box[0] * width,
box[1] * height,
(box[0] + box[2]) * width,
(box[1] + box[3]) * height,
320,
1.35,
)
# save width of region to grid as relative
grid[x_pos][y_pos]["sizes"].append(
(calculated_region[2] - calculated_region[0]) / width
)
for x in range(GRID_SIZE):
for y in range(GRID_SIZE):
cell = grid[x][y]
if len(cell["sizes"]) == 0:
continue
std_dev = np.std(cell["sizes"])
mean = np.mean(cell["sizes"])
logger.debug(f"std dev: {std_dev} mean: {mean}")
cell["x"] = x
cell["y"] = y
cell["std_dev"] = std_dev
cell["mean"] = mean
# update db with new grid
region = {
Regions.camera: name,
Regions.grid: grid,
Regions.last_update: new_update,
}
(
Regions.insert(region)
.on_conflict(
conflict_target=[Regions.camera],
update=region,
)
.execute()
)
return grid
def get_cluster_region_from_grid(frame_shape, min_region, cluster, boxes, region_grid):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return get_region_from_grid(
frame_shape, [min_x, min_y, max_x, max_y], min_region, region_grid
)
def get_region_from_grid(
frame_shape: tuple[int],
cluster: list[int],
min_region: int,
region_grid: list[list[dict[str, any]]],
) -> list[int]:
"""Get a region for a box based on the region grid."""
box = calculate_region(
frame_shape, cluster[0], cluster[1], cluster[2], cluster[3], min_region
)
centroid = (
box[0] + (min(frame_shape[1], box[2]) - box[0]) / 2,
box[1] + (min(frame_shape[0], box[3]) - box[1]) / 2,
)
grid_x = int(centroid[0] / frame_shape[1] * GRID_SIZE)
grid_y = int(centroid[1] / frame_shape[0] * GRID_SIZE)
cell = region_grid[grid_x][grid_y]
# if there is no known data, use original region calculation
if not cell or not cell["sizes"]:
return box
# convert the calculated region size to relative
calc_size = (box[2] - box[0]) / frame_shape[1]
# if region is within expected size, don't resize
if (
(cell["mean"] - cell["std_dev"])
<= calc_size
<= (cell["mean"] + cell["std_dev"])
):
return box
# TODO not sure how to handle case where cluster is larger than expected region
elif calc_size > (cell["mean"] + cell["std_dev"]):
return box
size = cell["mean"] * frame_shape[1]
# get region based on grid size
return calculate_region(
frame_shape,
max(0, centroid[0] - size / 2),
max(0, centroid[1] - size / 2),
min(frame_shape[1], centroid[0] + size / 2),
min(frame_shape[0], centroid[1] + size / 2),
min_region,
)
def is_object_filtered(obj, objects_to_track, object_filters):
object_name = obj[0]
object_score = obj[1]
object_box = obj[2]
object_area = obj[3]
object_ratio = obj[4]
if object_name not in objects_to_track:
return True
if object_name in object_filters:
obj_settings = object_filters[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > object_area:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < object_area:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > object_score:
return True
# if the object is not proportionally wide enough
if obj_settings.min_ratio > object_ratio:
return True
# if the object is proportionally too wide
if obj_settings.max_ratio < object_ratio:
return True
if obj_settings.mask is not None:
# compute the coordinates of the object and make sure
# the location isn't outside the bounds of the image (can happen from rounding)
object_xmin = object_box[0]
object_xmax = object_box[2]
object_ymax = object_box[3]
y_location = min(int(object_ymax), len(obj_settings.mask) - 1)
x_location = min(
int((object_xmax + object_xmin) / 2.0),
len(obj_settings.mask[0]) - 1,
)
# if the object is in a masked location, don't add it to detected objects
if obj_settings.mask[y_location][x_location] == 0:
return True
return False
def get_min_region_size(model_config: ModelConfig) -> int:
"""Get the min region size."""
return max(model_config.height, model_config.width)
def create_tensor_input(frame, model_config: ModelConfig, region):
if model_config.input_pixel_format == PixelFormatEnum.rgb:
cropped_frame = yuv_region_2_rgb(frame, region)
elif model_config.input_pixel_format == PixelFormatEnum.bgr:
cropped_frame = yuv_region_2_bgr(frame, region)
else:
cropped_frame = yuv_region_2_yuv(frame, region)
# Resize if needed
if cropped_frame.shape != (model_config.height, model_config.width, 3):
cropped_frame = cv2.resize(
cropped_frame,
dsize=(model_config.width, model_config.height),
interpolation=cv2.INTER_LINEAR,
)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def box_overlaps(b1, b2):
if b1[2] < b2[0] or b1[0] > b2[2] or b1[1] > b2[3] or b1[3] < b2[1]:
return False
return True
def box_inside(b1, b2):
# check if b2 is inside b1
if b2[0] >= b1[0] and b2[1] >= b1[1] and b2[2] <= b1[2] and b2[3] <= b1[3]:
return True
return False
def reduce_boxes(boxes, iou_threshold=0.0):
clusters = []
for box in boxes:
matched = 0
for cluster in clusters:
if intersection_over_union(box, cluster) > iou_threshold:
matched = 1
cluster[0] = min(cluster[0], box[0])
cluster[1] = min(cluster[1], box[1])
cluster[2] = max(cluster[2], box[2])
cluster[3] = max(cluster[3], box[3])
if not matched:
clusters.append(list(box))
return [tuple(c) for c in clusters]
def intersects_any(box_a, boxes):
for box in boxes:
if box_overlaps(box_a, box):
return True
return False
def inside_any(box_a, boxes):
for box in boxes:
# check if box_a is inside of box
if box_inside(box, box_a):
return True
return False
def get_cluster_boundary(box, min_region):
# compute the max region size for the current box (box is 10% of region)
box_width = box[2] - box[0]
box_height = box[3] - box[1]
max_region_area = abs(box_width * box_height) / 0.1
max_region_size = max(min_region, int(math.sqrt(max_region_area)))
centroid = (box_width / 2 + box[0], box_height / 2 + box[1])
max_x_dist = int(max_region_size - box_width / 2 * 1.1)
max_y_dist = int(max_region_size - box_height / 2 * 1.1)
return [
int(centroid[0] - max_x_dist),
int(centroid[1] - max_y_dist),
int(centroid[0] + max_x_dist),
int(centroid[1] + max_y_dist),
]
def get_cluster_candidates(frame_shape, min_region, boxes):
# and create a cluster of other boxes using it's max region size
# only include boxes where the region is an appropriate(except the region could possibly be smaller?)
# size in the cluster. in order to be in the cluster, the furthest corner needs to be within x,y offset
# determined by the max_region size minus half the box + 20%
# TODO: see if we can do this with numpy
cluster_candidates = []
used_boxes = []
# loop over each box
for current_index, b in enumerate(boxes):
if current_index in used_boxes:
continue
cluster = [current_index]
used_boxes.append(current_index)
cluster_boundary = get_cluster_boundary(b, min_region)
# find all other boxes that fit inside the boundary
for compare_index, compare_box in enumerate(boxes):
if compare_index in used_boxes:
continue
# if the box is not inside the potential cluster area, cluster them
if not box_inside(cluster_boundary, compare_box):
continue
# get the region if you were to add this box to the cluster
potential_cluster = cluster + [compare_index]
cluster_region = get_cluster_region(
frame_shape, min_region, potential_cluster, boxes
)
# if region could be smaller and either box would be too small
# for the resulting region, dont cluster
should_cluster = True
if (cluster_region[2] - cluster_region[0]) > min_region:
for b in potential_cluster:
box = boxes[b]
# boxes should be more than 5% of the area of the region
if area(box) / area(cluster_region) < 0.05:
should_cluster = False
break
if should_cluster:
cluster.append(compare_index)
used_boxes.append(compare_index)
cluster_candidates.append(cluster)
# return the unique clusters only
unique = {tuple(sorted(c)) for c in cluster_candidates}
return [list(tup) for tup in unique]
def get_cluster_region(frame_shape, min_region, cluster, boxes):
min_x = frame_shape[1]
min_y = frame_shape[0]
max_x = 0
max_y = 0
for b in cluster:
min_x = min(boxes[b][0], min_x)
min_y = min(boxes[b][1], min_y)
max_x = max(boxes[b][2], max_x)
max_y = max(boxes[b][3], max_y)
return calculate_region(
frame_shape, min_x, min_y, max_x, max_y, min_region, multiplier=1.2
)
def get_startup_regions(
frame_shape: tuple[int],
region_min_size: int,
region_grid: list[list[dict[str, any]]],
) -> list[list[int]]:
"""Get a list of regions to run on startup."""
# return 8 most popular regions for the camera
all_cells = np.concatenate(region_grid).flat
startup_cells = sorted(all_cells, key=lambda c: len(c["sizes"]), reverse=True)[0:8]
regions = []
for cell in startup_cells:
# rest of the cells are empty
if not cell["sizes"]:
break
x = frame_shape[1] / GRID_SIZE * (0.5 + cell["x"])
y = frame_shape[0] / GRID_SIZE * (0.5 + cell["y"])
size = cell["mean"] * frame_shape[1]
regions.append(
calculate_region(
frame_shape,
x - size / 2,
y - size / 2,
x + size / 2,
y + size / 2,
region_min_size,
multiplier=1,
)
)
return regions
def reduce_detections(
frame_shape: tuple[int],
all_detections: list[tuple[any]],
) -> list[tuple[any]]:
"""Take a list of detections and reduce overlaps to create a list of confident detections."""
def reduce_overlapping_detections(detections: list[tuple[any]]) -> list[tuple[any]]:
"""apply non-maxima suppression to suppress weak, overlapping bounding boxes."""
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# o[2] is the box of the object: xmin, ymin, xmax, ymax
# apply max/min to ensure values do not exceed the known frame size
boxes = [
(
o[2][0],
o[2][1],
o[2][2] - o[2][0],
o[2][3] - o[2][1],
)
for o in group
]
# reduce confidences for objects that are on edge of region
# 0.6 should be used to ensure that the object is still considered and not dropped
# due to min score requirement of NMSBoxes
confidences = [0.6 if clipped(o, frame_shape) else o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
# add objects
for index in idxs:
index = index if isinstance(index, np.int32) else index[0]
obj = group[index]
selected_objects.append(obj)
# set the detections list to only include top objects
return selected_objects
def get_consolidated_object_detections(detections: list[tuple[any]]):
"""Drop detections that overlap too much."""
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
consolidated_detections = []
for group in detected_object_groups.values():
# if the group only has 1 item, skip
if len(group) == 1:
consolidated_detections.append(group[0])
continue
# sort smallest to largest by area
sorted_by_area = sorted(group, key=lambda g: g[3])
for current_detection_idx in range(0, len(sorted_by_area)):
current_detection = sorted_by_area[current_detection_idx]
current_label = current_detection[0]
current_box = current_detection[2]
overlap = 0
for to_check_idx in range(
min(current_detection_idx + 1, len(sorted_by_area)),
len(sorted_by_area),
):
to_check = sorted_by_area[to_check_idx][2]
# if area of current detection / area of check < 5% they should not be compared
# this covers cases where a large car parked in a driveway doesn't block detections
# of cars in the street behind it
if area(current_box) / area(to_check) < 0.05:
continue
intersect_box = intersection(current_box, to_check)
# if % of smaller detection is inside of another detection, consolidate
if intersect_box is not None and area(intersect_box) / area(
current_box
) > LABEL_CONSOLIDATION_MAP.get(
current_label, LABEL_CONSOLIDATION_DEFAULT
):
overlap = 1
break
if overlap == 0:
consolidated_detections.append(
sorted_by_area[current_detection_idx]
)
return consolidated_detections
return get_consolidated_object_detections(
reduce_overlapping_detections(all_detections)
)