mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	
		
			
				
	
	
		
			139 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			139 lines
		
	
	
		
			5.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import datetime
 | |
| import time
 | |
| import cv2
 | |
| import threading
 | |
| import copy
 | |
| import prctl
 | |
| import numpy as np
 | |
| from edgetpu.detection.engine import DetectionEngine
 | |
| 
 | |
| from frigate.util import tonumpyarray, LABELS, PATH_TO_CKPT, calculate_region
 | |
| 
 | |
| class PreppedQueueProcessor(threading.Thread):
 | |
|     def __init__(self, cameras, prepped_frame_queue, fps):
 | |
| 
 | |
|         threading.Thread.__init__(self)
 | |
|         self.cameras = cameras
 | |
|         self.prepped_frame_queue = prepped_frame_queue
 | |
|         
 | |
|         # Load the edgetpu engine and labels
 | |
|         self.engine = DetectionEngine(PATH_TO_CKPT)
 | |
|         self.labels = LABELS
 | |
|         self.fps = fps
 | |
|         self.avg_inference_speed = 10
 | |
| 
 | |
|     def run(self):
 | |
|         prctl.set_name(self.__class__.__name__)
 | |
|         # process queue...
 | |
|         while True:
 | |
|             frame = self.prepped_frame_queue.get()
 | |
| 
 | |
|             # Actual detection.
 | |
|             frame['detected_objects'] = self.engine.detect_with_input_tensor(frame['frame'], threshold=0.2, top_k=5)
 | |
|             self.fps.update()
 | |
|             self.avg_inference_speed = (self.avg_inference_speed*9 + self.engine.get_inference_time())/10
 | |
| 
 | |
|             self.cameras[frame['camera_name']].detected_objects_queue.put(frame)
 | |
| 
 | |
| class RegionRequester(threading.Thread):
 | |
|     def __init__(self, camera):
 | |
|         threading.Thread.__init__(self)
 | |
|         self.camera = camera
 | |
| 
 | |
|     def run(self):
 | |
|         prctl.set_name(self.__class__.__name__)
 | |
|         frame_time = 0.0
 | |
|         while True:
 | |
|             now = datetime.datetime.now().timestamp()
 | |
| 
 | |
|             with self.camera.frame_ready:
 | |
|                 # if there isnt a frame ready for processing or it is old, wait for a new frame
 | |
|                 if self.camera.frame_time.value == frame_time or (now - self.camera.frame_time.value) > 0.5:
 | |
|                     self.camera.frame_ready.wait()
 | |
|             
 | |
|             # make a copy of the frame_time
 | |
|             frame_time = self.camera.frame_time.value
 | |
| 
 | |
|             # grab the current tracked objects
 | |
|             with self.camera.object_tracker.tracked_objects_lock:
 | |
|                 tracked_objects = copy.deepcopy(self.camera.object_tracker.tracked_objects).values()
 | |
| 
 | |
|             with self.camera.regions_in_process_lock:
 | |
|                 self.camera.regions_in_process[frame_time] = len(self.camera.config['regions'])
 | |
|                 self.camera.regions_in_process[frame_time] += len(tracked_objects)
 | |
| 
 | |
|             for index, region in enumerate(self.camera.config['regions']):
 | |
|                 self.camera.resize_queue.put({
 | |
|                     'camera_name': self.camera.name,
 | |
|                     'frame_time': frame_time,
 | |
|                     'region_id': index,
 | |
|                     'size': region['size'],
 | |
|                     'x_offset': region['x_offset'],
 | |
|                     'y_offset': region['y_offset']
 | |
|                 })
 | |
|             
 | |
|             # request a region for tracked objects
 | |
|             for tracked_object in tracked_objects:
 | |
|                 box = tracked_object['box']
 | |
|                 # calculate a new region that will hopefully get the entire object
 | |
|                 (size, x_offset, y_offset) = calculate_region(self.camera.frame_shape, 
 | |
|                     box['xmin'], box['ymin'],
 | |
|                     box['xmax'], box['ymax'])
 | |
| 
 | |
|                 self.camera.resize_queue.put({
 | |
|                     'camera_name': self.camera.name,
 | |
|                     'frame_time': frame_time,
 | |
|                     'region_id': -1,
 | |
|                     'size': size,
 | |
|                     'x_offset': x_offset,
 | |
|                     'y_offset': y_offset
 | |
|                 })
 | |
| 
 | |
| 
 | |
| class RegionPrepper(threading.Thread):
 | |
|     def __init__(self, camera, frame_cache, resize_request_queue, prepped_frame_queue):
 | |
|         threading.Thread.__init__(self)
 | |
|         self.camera = camera
 | |
|         self.frame_cache = frame_cache
 | |
|         self.resize_request_queue = resize_request_queue
 | |
|         self.prepped_frame_queue = prepped_frame_queue
 | |
| 
 | |
|     def run(self):
 | |
|         prctl.set_name(self.__class__.__name__)
 | |
|         while True:
 | |
| 
 | |
|             resize_request = self.resize_request_queue.get()
 | |
| 
 | |
|             # if the queue is over 100 items long, only prep dynamic regions
 | |
|             if resize_request['region_id'] != -1 and self.prepped_frame_queue.qsize() > 100:
 | |
|                 with self.camera.regions_in_process_lock:
 | |
|                     self.camera.regions_in_process[resize_request['frame_time']] -= 1
 | |
|                     if self.camera.regions_in_process[resize_request['frame_time']] == 0:
 | |
|                         del self.camera.regions_in_process[resize_request['frame_time']]
 | |
|                 self.camera.skipped_region_tracker.update()
 | |
|                 continue
 | |
| 
 | |
|             frame = self.frame_cache.get(resize_request['frame_time'], None)
 | |
|             
 | |
|             if frame is None:
 | |
|                 print("RegionPrepper: frame_time not in frame_cache")
 | |
|                 with self.camera.regions_in_process_lock:
 | |
|                     self.camera.regions_in_process[resize_request['frame_time']] -= 1
 | |
|                     if self.camera.regions_in_process[resize_request['frame_time']] == 0:
 | |
|                         del self.camera.regions_in_process[resize_request['frame_time']]
 | |
|                 self.camera.skipped_region_tracker.update()
 | |
|                 continue
 | |
| 
 | |
|             # make a copy of the region
 | |
|             cropped_frame = frame[resize_request['y_offset']:resize_request['y_offset']+resize_request['size'], resize_request['x_offset']:resize_request['x_offset']+resize_request['size']].copy()
 | |
| 
 | |
|             # Resize to 300x300 if needed
 | |
|             if cropped_frame.shape != (300, 300, 3):
 | |
|                 # TODO: use Pillow-SIMD?
 | |
|                 cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
 | |
|             # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
 | |
|             frame_expanded = np.expand_dims(cropped_frame, axis=0)
 | |
| 
 | |
|             # add the frame to the queue
 | |
|             resize_request['frame'] = frame_expanded.flatten().copy()
 | |
|             self.prepped_frame_queue.put(resize_request) |