mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
44d8cdbba1
* ROCm AMD/GPU based build and detector, WIP * detectors/rocm: separate yolov8 postprocessing into own function; fix box scaling; use cv2.dnn.blobForImage for preprocessing; assert on required model parameters * AMD/ROCm: add couple of more ultralytics models; comments * docker/rocm: make imported model files readable by all * docker/rocm: readme about running on AMD GPUs * docker/rocm: updated README * docker/rocm: updated README * docker/rocm: updated README * detectors/rocm: separated preprocessing functions into yolo_utils.py * detector/plugins: added onnx cpu plugin * docker/rocm: updated container with limite label sets * example detectors view * docker/rocm: updated README.md * docker/rocm: update README.md * docker/rocm: do not set HSA_OVERRIDE_GFX_VERSION at all for the general version as the empty value broke rocm * detectors: simplified/optimized yolov8_postprocess * detector/yolo_utils: indentation, remove unused variable * detectors/rocm: default option to conserve cpu usage at the expense of latency * detectors/yolo_utils: use nms to prefilter overlapping boxes if too many detected * detectors/edgetpu_tfl: add support for yolov8 * util/download_models: script to download yolov8 model files * docker/main: add download-models overlay into s6 startup * detectors/rocm: assume models are in /config/model_cache/yolov8/ * docker/rocm: compile onnx files into mxr files at startup * switch model download into bash script * detectors/rocm: automatically override HSA_OVERRIDE_GFX_VERSION for couple of known chipsets * docs: rocm detector first notes * typos * describe builds (harakas temporary) * docker/rocm: also build a version for gfx1100 * docker/rocm: use cp instead of tar * docker.rocm: remove README as it is now in detector config * frigate/detectors: renamed yolov8_preprocess->preprocess, pass input tensor element type * docker/main: use newer openvino (2023.3.0) * detectors: implement class aggregation * update yolov8 model * add openvino/yolov8 support for label aggregation * docker: remove pointless s6/timeout-up files * Revert "detectors: implement class aggregation" This reverts commitdcfe6bbf6f
. * detectors/openvino: remove class aggregation * detectors: increase yolov8 postprocessing score trershold to 0.5 * docker/rocm: separate rocm distributed files into its own build stage * Update object_detectors.md * updated CODEOWNERS file for rocm * updated build names for documentation * Revert "docker/main: use newer openvino (2023.3.0)" This reverts commitdee95de908
. * reverrted openvino detector * reverted edgetpu detector * scratched rocm docs from any mention of edgetpu or openvino * Update docs/docs/configuration/object_detectors.md Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com> * renamed frigate.detectors.yolo_utils.py -> frigate.detectors.util.py * clarified rocm example performance * Improved wording and clarified text * Mentioned rocm detector for AMD GPUs * applied ruff formating * applied ruff suggested fixes * docker/rocm: fix missing argument resulting in larger docker image sizes * docs/configuration/object_detectors: fix links to yolov8 release files --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
84 lines
2.9 KiB
Python
84 lines
2.9 KiB
Python
import logging
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def preprocess(tensor_input, model_input_shape, model_input_element_type):
|
|
model_input_shape = tuple(model_input_shape)
|
|
assert tensor_input.dtype == np.uint8, f"tensor_input.dtype: {tensor_input.dtype}"
|
|
if len(tensor_input.shape) == 3:
|
|
tensor_input = tensor_input[np.newaxis, :]
|
|
if model_input_element_type == np.uint8:
|
|
# nothing to do for uint8 model input
|
|
assert (
|
|
model_input_shape == tensor_input.shape
|
|
), f"model_input_shape: {model_input_shape}, tensor_input.shape: {tensor_input.shape}"
|
|
return tensor_input
|
|
assert (
|
|
model_input_element_type == np.float32
|
|
), f"model_input_element_type: {model_input_element_type}"
|
|
# tensor_input must be nhwc
|
|
assert tensor_input.shape[3] == 3, f"tensor_input.shape: {tensor_input.shape}"
|
|
if tensor_input.shape[1:3] != model_input_shape[2:4]:
|
|
logger.warn(
|
|
f"preprocess: tensor_input.shape {tensor_input.shape} and model_input_shape {model_input_shape} do not match!"
|
|
)
|
|
# cv2.dnn.blobFromImage is faster than numpying it
|
|
return cv2.dnn.blobFromImage(
|
|
tensor_input[0],
|
|
1.0 / 255,
|
|
(model_input_shape[3], model_input_shape[2]),
|
|
None,
|
|
swapRB=False,
|
|
)
|
|
|
|
|
|
def yolov8_postprocess(
|
|
model_input_shape,
|
|
tensor_output,
|
|
box_count=20,
|
|
score_threshold=0.5,
|
|
nms_threshold=0.5,
|
|
):
|
|
model_box_count = tensor_output.shape[2]
|
|
probs = tensor_output[0, 4:, :]
|
|
all_ids = np.argmax(probs, axis=0)
|
|
all_confidences = probs.T[np.arange(model_box_count), all_ids]
|
|
all_boxes = tensor_output[0, 0:4, :].T
|
|
mask = all_confidences > score_threshold
|
|
class_ids = all_ids[mask]
|
|
confidences = all_confidences[mask]
|
|
cx, cy, w, h = all_boxes[mask].T
|
|
|
|
if model_input_shape[3] == 3:
|
|
scale_y, scale_x = 1 / model_input_shape[1], 1 / model_input_shape[2]
|
|
else:
|
|
scale_y, scale_x = 1 / model_input_shape[2], 1 / model_input_shape[3]
|
|
detections = np.stack(
|
|
(
|
|
class_ids,
|
|
confidences,
|
|
scale_y * (cy - h / 2),
|
|
scale_x * (cx - w / 2),
|
|
scale_y * (cy + h / 2),
|
|
scale_x * (cx + w / 2),
|
|
),
|
|
axis=1,
|
|
)
|
|
if detections.shape[0] > box_count:
|
|
# if too many detections, do nms filtering to suppress overlapping boxes
|
|
boxes = np.stack((cx - w / 2, cy - h / 2, w, h), axis=1)
|
|
indexes = cv2.dnn.NMSBoxes(boxes, confidences, score_threshold, nms_threshold)
|
|
detections = detections[indexes]
|
|
# if still too many, trim the rest by confidence
|
|
if detections.shape[0] > box_count:
|
|
detections = detections[
|
|
np.argpartition(detections[:, 1], -box_count)[-box_count:]
|
|
]
|
|
detections = detections.copy()
|
|
detections.resize((box_count, 6))
|
|
return detections
|