mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Fix yolov9 NMS * Improve batched yolo NMS * Consolidate grids and strides calculation * Use existing variable * Remove * Ensure init is called
		
			
				
	
	
		
			120 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
		
			3.9 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import logging
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from pydantic import Field
 | 
						|
from typing_extensions import Literal
 | 
						|
 | 
						|
from frigate.detectors.detection_api import DetectionApi
 | 
						|
from frigate.detectors.detector_config import (
 | 
						|
    BaseDetectorConfig,
 | 
						|
    ModelTypeEnum,
 | 
						|
)
 | 
						|
from frigate.util.model import (
 | 
						|
    get_ort_providers,
 | 
						|
    post_process_dfine,
 | 
						|
    post_process_rfdetr,
 | 
						|
    post_process_yolo,
 | 
						|
    post_process_yolox,
 | 
						|
)
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
DETECTOR_KEY = "onnx"
 | 
						|
 | 
						|
 | 
						|
class ONNXDetectorConfig(BaseDetectorConfig):
 | 
						|
    type: Literal[DETECTOR_KEY]
 | 
						|
    device: str = Field(default="AUTO", title="Device Type")
 | 
						|
 | 
						|
 | 
						|
class ONNXDetector(DetectionApi):
 | 
						|
    type_key = DETECTOR_KEY
 | 
						|
 | 
						|
    def __init__(self, detector_config: ONNXDetectorConfig):
 | 
						|
        super().__init__(detector_config)
 | 
						|
 | 
						|
        try:
 | 
						|
            import onnxruntime as ort
 | 
						|
 | 
						|
            logger.info("ONNX: loaded onnxruntime module")
 | 
						|
        except ModuleNotFoundError:
 | 
						|
            logger.error(
 | 
						|
                "ONNX: module loading failed, need 'pip install onnxruntime'?!?"
 | 
						|
            )
 | 
						|
            raise
 | 
						|
 | 
						|
        path = detector_config.model.path
 | 
						|
        logger.info(f"ONNX: loading {detector_config.model.path}")
 | 
						|
 | 
						|
        providers, options = get_ort_providers(
 | 
						|
            detector_config.device == "CPU", detector_config.device
 | 
						|
        )
 | 
						|
 | 
						|
        self.model = ort.InferenceSession(
 | 
						|
            path, providers=providers, provider_options=options
 | 
						|
        )
 | 
						|
 | 
						|
        self.onnx_model_type = detector_config.model.model_type
 | 
						|
        self.onnx_model_px = detector_config.model.input_pixel_format
 | 
						|
        self.onnx_model_shape = detector_config.model.input_tensor
 | 
						|
        path = detector_config.model.path
 | 
						|
 | 
						|
        if self.onnx_model_type == ModelTypeEnum.yolox:
 | 
						|
            self.calculate_grids_strides()
 | 
						|
 | 
						|
        logger.info(f"ONNX: {path} loaded")
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input: np.ndarray):
 | 
						|
        if self.onnx_model_type == ModelTypeEnum.dfine:
 | 
						|
            tensor_output = self.model.run(
 | 
						|
                None,
 | 
						|
                {
 | 
						|
                    "images": tensor_input,
 | 
						|
                    "orig_target_sizes": np.array(
 | 
						|
                        [[self.height, self.width]], dtype=np.int64
 | 
						|
                    ),
 | 
						|
                },
 | 
						|
            )
 | 
						|
            return post_process_dfine(tensor_output, self.width, self.height)
 | 
						|
 | 
						|
        model_input_name = self.model.get_inputs()[0].name
 | 
						|
        tensor_output = self.model.run(None, {model_input_name: tensor_input})
 | 
						|
 | 
						|
        if self.onnx_model_type == ModelTypeEnum.rfdetr:
 | 
						|
            return post_process_rfdetr(tensor_output)
 | 
						|
        elif self.onnx_model_type == ModelTypeEnum.yolonas:
 | 
						|
            predictions = tensor_output[0]
 | 
						|
 | 
						|
            detections = np.zeros((20, 6), np.float32)
 | 
						|
 | 
						|
            for i, prediction in enumerate(predictions):
 | 
						|
                if i == 20:
 | 
						|
                    break
 | 
						|
                (_, x_min, y_min, x_max, y_max, confidence, class_id) = prediction
 | 
						|
                # when running in GPU mode, empty predictions in the output have class_id of -1
 | 
						|
                if class_id < 0:
 | 
						|
                    break
 | 
						|
                detections[i] = [
 | 
						|
                    class_id,
 | 
						|
                    confidence,
 | 
						|
                    y_min / self.height,
 | 
						|
                    x_min / self.width,
 | 
						|
                    y_max / self.height,
 | 
						|
                    x_max / self.width,
 | 
						|
                ]
 | 
						|
            return detections
 | 
						|
        elif self.onnx_model_type == ModelTypeEnum.yologeneric:
 | 
						|
            return post_process_yolo(tensor_output, self.width, self.height)
 | 
						|
        elif self.onnx_model_type == ModelTypeEnum.yolox:
 | 
						|
            return post_process_yolox(
 | 
						|
                tensor_output[0],
 | 
						|
                self.width,
 | 
						|
                self.height,
 | 
						|
                self.grids,
 | 
						|
                self.expanded_strides,
 | 
						|
            )
 | 
						|
        else:
 | 
						|
            raise Exception(
 | 
						|
                f"{self.onnx_model_type} is currently not supported for onnx. See the docs for more info on supported models."
 | 
						|
            )
 |