mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-12-19 19:06:16 +01:00
9e825811f2
* initial event search api implementation * fix lint * fix tests * move chromadb imports and pysqlite hotswap to fix tests * remove unused import * switch default limit to 50 * fix events accidently pulling inside chroma results loop
48 lines
1.1 KiB
Python
48 lines
1.1 KiB
Python
"""Z-score normalization for search distance."""
|
|
|
|
import math
|
|
|
|
|
|
class ZScoreNormalization:
|
|
"""Running Z-score normalization for search distance."""
|
|
|
|
def __init__(self):
|
|
self.n = 0
|
|
self.mean = 0
|
|
self.m2 = 0
|
|
|
|
@property
|
|
def variance(self):
|
|
return self.m2 / (self.n - 1) if self.n > 1 else 0.0
|
|
|
|
@property
|
|
def stddev(self):
|
|
return math.sqrt(self.variance)
|
|
|
|
def normalize(self, distances: list[float]):
|
|
self._update(distances)
|
|
if self.stddev == 0:
|
|
return distances
|
|
return [(x - self.mean) / self.stddev for x in distances]
|
|
|
|
def _update(self, distances: list[float]):
|
|
for x in distances:
|
|
self.n += 1
|
|
delta = x - self.mean
|
|
self.mean += delta / self.n
|
|
delta2 = x - self.mean
|
|
self.m2 += delta * delta2
|
|
|
|
def to_dict(self):
|
|
return {
|
|
"n": self.n,
|
|
"mean": self.mean,
|
|
"m2": self.m2,
|
|
}
|
|
|
|
def from_dict(self, data: dict):
|
|
self.n = data["n"]
|
|
self.mean = data["mean"]
|
|
self.m2 = data["m2"]
|
|
return self
|