mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
363 lines
14 KiB
Python
363 lines
14 KiB
Python
import os
|
|
import time
|
|
import datetime
|
|
import cv2
|
|
import queue
|
|
import threading
|
|
import ctypes
|
|
import multiprocessing as mp
|
|
import subprocess as sp
|
|
import numpy as np
|
|
import prctl
|
|
import itertools
|
|
from collections import defaultdict
|
|
from frigate.util import tonumpyarray, LABELS, draw_box_with_label, calculate_region, EventsPerSecond
|
|
from frigate.object_detection import RegionPrepper, RegionRequester
|
|
from frigate.objects import ObjectCleaner, BestFrames, DetectedObjectsProcessor, RegionRefiner, ObjectTracker
|
|
from frigate.mqtt import MqttObjectPublisher
|
|
|
|
# Stores 2 seconds worth of frames so they can be used for other threads
|
|
class FrameTracker(threading.Thread):
|
|
def __init__(self, frame_time, frame_ready, frame_lock, recent_frames):
|
|
threading.Thread.__init__(self)
|
|
self.frame_time = frame_time
|
|
self.frame_ready = frame_ready
|
|
self.frame_lock = frame_lock
|
|
self.recent_frames = recent_frames
|
|
|
|
def run(self):
|
|
prctl.set_name("FrameTracker")
|
|
while True:
|
|
# wait for a frame
|
|
with self.frame_ready:
|
|
self.frame_ready.wait()
|
|
|
|
now = datetime.datetime.now().timestamp()
|
|
# delete any old frames
|
|
stored_frame_times = list(self.recent_frames.keys())
|
|
for k in stored_frame_times:
|
|
if (now - k) > 10:
|
|
del self.recent_frames[k]
|
|
|
|
def get_frame_shape(source):
|
|
# capture a single frame and check the frame shape so the correct array
|
|
# size can be allocated in memory
|
|
video = cv2.VideoCapture(source)
|
|
ret, frame = video.read()
|
|
frame_shape = frame.shape
|
|
video.release()
|
|
return frame_shape
|
|
|
|
def get_ffmpeg_input(ffmpeg_input):
|
|
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
|
return ffmpeg_input.format(**frigate_vars)
|
|
|
|
class CameraWatchdog(threading.Thread):
|
|
def __init__(self, camera):
|
|
threading.Thread.__init__(self)
|
|
self.camera = camera
|
|
|
|
def run(self):
|
|
prctl.set_name("CameraWatchdog")
|
|
while True:
|
|
# wait a bit before checking
|
|
time.sleep(10)
|
|
|
|
if (datetime.datetime.now().timestamp() - self.camera.frame_time.value) > 300:
|
|
print("last frame is more than 5 minutes old, restarting camera capture...")
|
|
self.camera.start_or_restart_capture()
|
|
time.sleep(5)
|
|
|
|
# Thread to read the stdout of the ffmpeg process and update the current frame
|
|
class CameraCapture(threading.Thread):
|
|
def __init__(self, camera):
|
|
threading.Thread.__init__(self)
|
|
self.camera = camera
|
|
|
|
def run(self):
|
|
prctl.set_name("CameraCapture")
|
|
frame_num = 0
|
|
while True:
|
|
if self.camera.ffmpeg_process.poll() != None:
|
|
print("ffmpeg process is not running. exiting capture thread...")
|
|
break
|
|
|
|
raw_image = self.camera.ffmpeg_process.stdout.read(self.camera.frame_size)
|
|
|
|
if len(raw_image) == 0:
|
|
print("ffmpeg didnt return a frame. something is wrong. exiting capture thread...")
|
|
break
|
|
|
|
frame_num += 1
|
|
if (frame_num % self.camera.take_frame) != 0:
|
|
continue
|
|
|
|
with self.camera.frame_lock:
|
|
# TODO: use frame_queue instead
|
|
self.camera.frame_time.value = datetime.datetime.now().timestamp()
|
|
self.camera.frame_cache[self.camera.frame_time.value] = (
|
|
np
|
|
.frombuffer(raw_image, np.uint8)
|
|
.reshape(self.camera.frame_shape)
|
|
)
|
|
self.camera.frame_queue.put(self.camera.frame_time.value)
|
|
# Notify with the condition that a new frame is ready
|
|
with self.camera.frame_ready:
|
|
self.camera.frame_ready.notify_all()
|
|
|
|
self.camera.fps.update()
|
|
|
|
class VideoWriter(threading.Thread):
|
|
def __init__(self, camera):
|
|
threading.Thread.__init__(self)
|
|
self.camera = camera
|
|
|
|
def run(self):
|
|
prctl.set_name("VideoWriter")
|
|
while True:
|
|
frame_time = self.camera.frame_tracked_queue.get()
|
|
if len(self.camera.detected_objects[frame_time]) == 0:
|
|
continue
|
|
f = open(f"/debug/{self.camera.name}-{str(frame_time)}.jpg", 'wb')
|
|
f.write(self.camera.frame_with_objects(frame_time))
|
|
f.close()
|
|
|
|
class Camera:
|
|
def __init__(self, name, ffmpeg_config, global_objects_config, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
|
self.name = name
|
|
self.config = config
|
|
self.detected_objects = defaultdict(lambda: [])
|
|
self.frame_cache = {}
|
|
self.last_processed_frame = None
|
|
# queue for re-assembling frames in order
|
|
self.frame_queue = queue.Queue()
|
|
# track how many regions have been requested for a frame so we know when a frame is complete
|
|
self.regions_in_process = {}
|
|
# Lock to control access
|
|
self.regions_in_process_lock = mp.Lock()
|
|
self.finished_frame_queue = queue.Queue()
|
|
self.refined_frame_queue = queue.Queue()
|
|
self.frame_tracked_queue = queue.Queue()
|
|
|
|
self.ffmpeg = config.get('ffmpeg', {})
|
|
self.ffmpeg_input = get_ffmpeg_input(self.ffmpeg['input'])
|
|
self.ffmpeg_global_args = self.ffmpeg.get('global_args', ffmpeg_config['global_args'])
|
|
self.ffmpeg_hwaccel_args = self.ffmpeg.get('hwaccel_args', ffmpeg_config['hwaccel_args'])
|
|
self.ffmpeg_input_args = self.ffmpeg.get('input_args', ffmpeg_config['input_args'])
|
|
self.ffmpeg_output_args = self.ffmpeg.get('output_args', ffmpeg_config['output_args'])
|
|
|
|
camera_objects_config = config.get('objects', {})
|
|
|
|
self.take_frame = self.config.get('take_frame', 1)
|
|
self.regions = self.config['regions']
|
|
self.frame_shape = get_frame_shape(self.ffmpeg_input)
|
|
self.frame_size = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
|
self.mqtt_client = mqtt_client
|
|
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
|
|
|
# create shared value for storing the frame_time
|
|
self.frame_time = mp.Value('d', 0.0)
|
|
# Lock to control access to the frame
|
|
self.frame_lock = mp.Lock()
|
|
# Condition for notifying that a new frame is ready
|
|
self.frame_ready = mp.Condition()
|
|
# Condition for notifying that objects were parsed
|
|
self.objects_parsed = mp.Condition()
|
|
|
|
# Queue for prepped frames, max size set to (number of regions * 5)
|
|
max_queue_size = len(self.config['regions'])*5
|
|
self.resize_queue = queue.Queue(max_queue_size)
|
|
|
|
# Queue for raw detected objects
|
|
self.detected_objects_queue = queue.Queue()
|
|
self.detected_objects_processor = DetectedObjectsProcessor(self)
|
|
self.detected_objects_processor.start()
|
|
|
|
# initialize the frame cache
|
|
self.cached_frame_with_objects = {
|
|
'frame_bytes': [],
|
|
'frame_time': 0
|
|
}
|
|
|
|
self.ffmpeg_process = None
|
|
self.capture_thread = None
|
|
self.fps = EventsPerSecond()
|
|
|
|
# combine tracked objects lists
|
|
self.objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
|
|
|
# merge object filters
|
|
global_object_filters = global_objects_config.get('filters', {})
|
|
camera_object_filters = camera_objects_config.get('filters', {})
|
|
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
|
self.object_filters = {}
|
|
for obj in objects_with_config:
|
|
self.object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
|
|
|
# start a thread to queue resize requests for regions
|
|
self.region_requester = RegionRequester(self)
|
|
self.region_requester.start()
|
|
|
|
# start a thread to cache recent frames for processing
|
|
self.frame_tracker = FrameTracker(self.frame_time,
|
|
self.frame_ready, self.frame_lock, self.frame_cache)
|
|
self.frame_tracker.start()
|
|
|
|
# start a thread to resize regions
|
|
self.region_prepper = RegionPrepper(self.frame_cache, self.resize_queue, prepped_frame_queue)
|
|
self.region_prepper.start()
|
|
|
|
# start a thread to store the highest scoring recent frames for monitored object types
|
|
self.best_frames = BestFrames(self.objects_parsed, self.frame_cache, self.detected_objects)
|
|
self.best_frames.start()
|
|
|
|
# start a thread to expire objects from the detected objects list
|
|
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
|
self.object_cleaner.start()
|
|
|
|
# start a thread to refine regions when objects are clipped
|
|
self.dynamic_region_fps = EventsPerSecond()
|
|
self.region_refiner = RegionRefiner(self)
|
|
self.region_refiner.start()
|
|
self.dynamic_region_fps.start()
|
|
|
|
# start a thread to track objects
|
|
self.object_tracker = ObjectTracker(self, 10)
|
|
self.object_tracker.start()
|
|
|
|
# start a thread to write tracked frames to disk
|
|
self.video_writer = VideoWriter(self)
|
|
self.video_writer.start()
|
|
|
|
# start a thread to publish object scores
|
|
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects, self.best_frames)
|
|
mqtt_publisher.start()
|
|
|
|
# create a watchdog thread for capture process
|
|
self.watchdog = CameraWatchdog(self)
|
|
|
|
# load in the mask for object detection
|
|
if 'mask' in self.config:
|
|
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
|
else:
|
|
self.mask = None
|
|
|
|
if self.mask is None:
|
|
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
|
self.mask[:] = 255
|
|
|
|
|
|
def start_or_restart_capture(self):
|
|
if not self.ffmpeg_process is None:
|
|
print("Terminating the existing ffmpeg process...")
|
|
self.ffmpeg_process.terminate()
|
|
try:
|
|
print("Waiting for ffmpeg to exit gracefully...")
|
|
self.ffmpeg_process.wait(timeout=30)
|
|
except sp.TimeoutExpired:
|
|
print("FFmpeg didnt exit. Force killing...")
|
|
self.ffmpeg_process.kill()
|
|
self.ffmpeg_process.wait()
|
|
|
|
print("Waiting for the capture thread to exit...")
|
|
self.capture_thread.join()
|
|
self.ffmpeg_process = None
|
|
self.capture_thread = None
|
|
|
|
# create the process to capture frames from the input stream and store in a shared array
|
|
print("Creating a new ffmpeg process...")
|
|
self.start_ffmpeg()
|
|
|
|
print("Creating a new capture thread...")
|
|
self.capture_thread = CameraCapture(self)
|
|
print("Starting a new capture thread...")
|
|
self.capture_thread.start()
|
|
self.fps.start()
|
|
|
|
def start_ffmpeg(self):
|
|
ffmpeg_cmd = (['ffmpeg'] +
|
|
self.ffmpeg_global_args +
|
|
self.ffmpeg_hwaccel_args +
|
|
self.ffmpeg_input_args +
|
|
['-i', self.ffmpeg_input] +
|
|
self.ffmpeg_output_args +
|
|
['pipe:'])
|
|
|
|
print(" ".join(ffmpeg_cmd))
|
|
|
|
self.ffmpeg_process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=self.frame_size)
|
|
|
|
def start(self):
|
|
self.start_or_restart_capture()
|
|
self.watchdog.start()
|
|
|
|
def join(self):
|
|
self.capture_thread.join()
|
|
|
|
def get_capture_pid(self):
|
|
return self.ffmpeg_process.pid
|
|
|
|
def get_best(self, label):
|
|
return self.best_frames.best_frames.get(label)
|
|
|
|
def stats(self):
|
|
return {
|
|
'camera_fps': self.fps.eps(60),
|
|
'resize_queue': self.resize_queue.qsize(),
|
|
'frame_queue': self.frame_queue.qsize(),
|
|
'finished_frame_queue': self.finished_frame_queue.qsize(),
|
|
'refined_frame_queue': self.refined_frame_queue.qsize(),
|
|
'regions_in_process': self.regions_in_process,
|
|
'dynamic_regions_per_sec': self.dynamic_region_fps.eps()
|
|
}
|
|
|
|
def frame_with_objects(self, frame_time):
|
|
frame = self.frame_cache[frame_time].copy()
|
|
|
|
for region in self.regions:
|
|
color = (255,255,255)
|
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
color, 2)
|
|
|
|
# draw the bounding boxes on the screen
|
|
for id, obj in self.object_tracker.tracked_objects.items():
|
|
# for obj in detected_objects[frame_time]:
|
|
cv2.rectangle(frame, (obj['region']['xmin'], obj['region']['ymin']),
|
|
(obj['region']['xmax'], obj['region']['ymax']),
|
|
(0,255,0), 1)
|
|
draw_box_with_label(frame, obj['box']['xmin'], obj['box']['ymin'], obj['box']['xmax'], obj['box']['ymax'], obj['name'], f"{int(obj['score']*100)}% {obj['area']} {id}")
|
|
|
|
# print a timestamp
|
|
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
|
cv2.putText(frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
|
# print fps
|
|
cv2.putText(frame, str(self.fps.eps())+'FPS', (10, 60), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
|
|
|
# convert to BGR
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
|
|
# encode the image into a jpg
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
|
|
return jpg.tobytes()
|
|
|
|
def get_current_frame_with_objects(self):
|
|
frame_time = self.last_processed_frame
|
|
if frame_time == self.cached_frame_with_objects['frame_time']:
|
|
return self.cached_frame_with_objects['frame_bytes']
|
|
|
|
frame_bytes = self.frame_with_objects(frame_time)
|
|
|
|
self.cached_frame_with_objects = {
|
|
'frame_bytes': frame_bytes,
|
|
'frame_time': frame_time
|
|
}
|
|
|
|
return frame_bytes
|
|
|
|
|
|
|
|
|