mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-27 10:52:11 +01:00 
			
		
		
		
	* Remove rocm detector plugin * Update docs to recommend using onnx for rocm * Formatting
		
			
				
	
	
		
			245 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			245 lines
		
	
	
		
			7.5 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
import datetime
 | 
						|
import logging
 | 
						|
import multiprocessing as mp
 | 
						|
import os
 | 
						|
import queue
 | 
						|
import signal
 | 
						|
import threading
 | 
						|
from abc import ABC, abstractmethod
 | 
						|
 | 
						|
import numpy as np
 | 
						|
from setproctitle import setproctitle
 | 
						|
 | 
						|
import frigate.util as util
 | 
						|
from frigate.detectors import create_detector
 | 
						|
from frigate.detectors.detector_config import (
 | 
						|
    BaseDetectorConfig,
 | 
						|
    InputDTypeEnum,
 | 
						|
    InputTensorEnum,
 | 
						|
)
 | 
						|
from frigate.util.builtin import EventsPerSecond, load_labels
 | 
						|
from frigate.util.image import SharedMemoryFrameManager, UntrackedSharedMemory
 | 
						|
from frigate.util.services import listen
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
 | 
						|
class ObjectDetector(ABC):
 | 
						|
    @abstractmethod
 | 
						|
    def detect(self, tensor_input, threshold: float = 0.4):
 | 
						|
        pass
 | 
						|
 | 
						|
 | 
						|
def tensor_transform(desired_shape: InputTensorEnum):
 | 
						|
    # Currently this function only supports BHWC permutations
 | 
						|
    if desired_shape == InputTensorEnum.nhwc:
 | 
						|
        return None
 | 
						|
    elif desired_shape == InputTensorEnum.nchw:
 | 
						|
        return (0, 3, 1, 2)
 | 
						|
 | 
						|
 | 
						|
class LocalObjectDetector(ObjectDetector):
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        detector_config: BaseDetectorConfig = None,
 | 
						|
        labels: str = None,
 | 
						|
    ):
 | 
						|
        self.fps = EventsPerSecond()
 | 
						|
        if labels is None:
 | 
						|
            self.labels = {}
 | 
						|
        else:
 | 
						|
            self.labels = load_labels(labels)
 | 
						|
 | 
						|
        if detector_config:
 | 
						|
            self.input_transform = tensor_transform(detector_config.model.input_tensor)
 | 
						|
 | 
						|
            self.dtype = detector_config.model.input_dtype
 | 
						|
        else:
 | 
						|
            self.input_transform = None
 | 
						|
            self.dtype = InputDTypeEnum.int
 | 
						|
 | 
						|
        self.detect_api = create_detector(detector_config)
 | 
						|
 | 
						|
    def detect(self, tensor_input: np.ndarray, threshold=0.4):
 | 
						|
        detections = []
 | 
						|
 | 
						|
        raw_detections = self.detect_raw(tensor_input)
 | 
						|
 | 
						|
        for d in raw_detections:
 | 
						|
            if int(d[0]) < 0 or int(d[0]) >= len(self.labels):
 | 
						|
                logger.warning(f"Raw Detect returned invalid label: {d}")
 | 
						|
                continue
 | 
						|
            if d[1] < threshold:
 | 
						|
                break
 | 
						|
            detections.append(
 | 
						|
                (self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
 | 
						|
            )
 | 
						|
        self.fps.update()
 | 
						|
        return detections
 | 
						|
 | 
						|
    def detect_raw(self, tensor_input: np.ndarray):
 | 
						|
        if self.input_transform:
 | 
						|
            tensor_input = np.transpose(tensor_input, self.input_transform)
 | 
						|
 | 
						|
        if self.dtype == InputDTypeEnum.float:
 | 
						|
            tensor_input = tensor_input.astype(np.float32)
 | 
						|
            tensor_input /= 255
 | 
						|
 | 
						|
        return self.detect_api.detect_raw(tensor_input=tensor_input)
 | 
						|
 | 
						|
 | 
						|
def run_detector(
 | 
						|
    name: str,
 | 
						|
    detection_queue: mp.Queue,
 | 
						|
    out_events: dict[str, mp.Event],
 | 
						|
    avg_speed,
 | 
						|
    start,
 | 
						|
    detector_config,
 | 
						|
):
 | 
						|
    threading.current_thread().name = f"detector:{name}"
 | 
						|
    logger = logging.getLogger(f"detector.{name}")
 | 
						|
    logger.info(f"Starting detection process: {os.getpid()}")
 | 
						|
    setproctitle(f"frigate.detector.{name}")
 | 
						|
    listen()
 | 
						|
 | 
						|
    stop_event = mp.Event()
 | 
						|
 | 
						|
    def receiveSignal(signalNumber, frame):
 | 
						|
        stop_event.set()
 | 
						|
 | 
						|
    signal.signal(signal.SIGTERM, receiveSignal)
 | 
						|
    signal.signal(signal.SIGINT, receiveSignal)
 | 
						|
 | 
						|
    frame_manager = SharedMemoryFrameManager()
 | 
						|
    object_detector = LocalObjectDetector(detector_config=detector_config)
 | 
						|
 | 
						|
    outputs = {}
 | 
						|
    for name in out_events.keys():
 | 
						|
        out_shm = UntrackedSharedMemory(name=f"out-{name}", create=False)
 | 
						|
        out_np = np.ndarray((20, 6), dtype=np.float32, buffer=out_shm.buf)
 | 
						|
        outputs[name] = {"shm": out_shm, "np": out_np}
 | 
						|
 | 
						|
    while not stop_event.is_set():
 | 
						|
        try:
 | 
						|
            connection_id = detection_queue.get(timeout=1)
 | 
						|
        except queue.Empty:
 | 
						|
            continue
 | 
						|
        input_frame = frame_manager.get(
 | 
						|
            connection_id,
 | 
						|
            (1, detector_config.model.height, detector_config.model.width, 3),
 | 
						|
        )
 | 
						|
 | 
						|
        if input_frame is None:
 | 
						|
            logger.warning(f"Failed to get frame {connection_id} from SHM")
 | 
						|
            continue
 | 
						|
 | 
						|
        # detect and send the output
 | 
						|
        start.value = datetime.datetime.now().timestamp()
 | 
						|
        detections = object_detector.detect_raw(input_frame)
 | 
						|
        duration = datetime.datetime.now().timestamp() - start.value
 | 
						|
        frame_manager.close(connection_id)
 | 
						|
        outputs[connection_id]["np"][:] = detections[:]
 | 
						|
        out_events[connection_id].set()
 | 
						|
        start.value = 0.0
 | 
						|
 | 
						|
        avg_speed.value = (avg_speed.value * 9 + duration) / 10
 | 
						|
 | 
						|
    logger.info("Exited detection process...")
 | 
						|
 | 
						|
 | 
						|
class ObjectDetectProcess:
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        name,
 | 
						|
        detection_queue,
 | 
						|
        out_events,
 | 
						|
        detector_config,
 | 
						|
    ):
 | 
						|
        self.name = name
 | 
						|
        self.out_events = out_events
 | 
						|
        self.detection_queue = detection_queue
 | 
						|
        self.avg_inference_speed = mp.Value("d", 0.01)
 | 
						|
        self.detection_start = mp.Value("d", 0.0)
 | 
						|
        self.detect_process = None
 | 
						|
        self.detector_config = detector_config
 | 
						|
        self.start_or_restart()
 | 
						|
 | 
						|
    def stop(self):
 | 
						|
        # if the process has already exited on its own, just return
 | 
						|
        if self.detect_process and self.detect_process.exitcode:
 | 
						|
            return
 | 
						|
        self.detect_process.terminate()
 | 
						|
        logging.info("Waiting for detection process to exit gracefully...")
 | 
						|
        self.detect_process.join(timeout=30)
 | 
						|
        if self.detect_process.exitcode is None:
 | 
						|
            logging.info("Detection process didn't exit. Force killing...")
 | 
						|
            self.detect_process.kill()
 | 
						|
            self.detect_process.join()
 | 
						|
        logging.info("Detection process has exited...")
 | 
						|
 | 
						|
    def start_or_restart(self):
 | 
						|
        self.detection_start.value = 0.0
 | 
						|
        if (self.detect_process is not None) and self.detect_process.is_alive():
 | 
						|
            self.stop()
 | 
						|
        self.detect_process = util.Process(
 | 
						|
            target=run_detector,
 | 
						|
            name=f"detector:{self.name}",
 | 
						|
            args=(
 | 
						|
                self.name,
 | 
						|
                self.detection_queue,
 | 
						|
                self.out_events,
 | 
						|
                self.avg_inference_speed,
 | 
						|
                self.detection_start,
 | 
						|
                self.detector_config,
 | 
						|
            ),
 | 
						|
        )
 | 
						|
        self.detect_process.daemon = True
 | 
						|
        self.detect_process.start()
 | 
						|
 | 
						|
 | 
						|
class RemoteObjectDetector:
 | 
						|
    def __init__(self, name, labels, detection_queue, event, model_config, stop_event):
 | 
						|
        self.labels = labels
 | 
						|
        self.name = name
 | 
						|
        self.fps = EventsPerSecond()
 | 
						|
        self.detection_queue = detection_queue
 | 
						|
        self.event = event
 | 
						|
        self.stop_event = stop_event
 | 
						|
        self.shm = UntrackedSharedMemory(name=self.name, create=False)
 | 
						|
        self.np_shm = np.ndarray(
 | 
						|
            (1, model_config.height, model_config.width, 3),
 | 
						|
            dtype=np.uint8,
 | 
						|
            buffer=self.shm.buf,
 | 
						|
        )
 | 
						|
        self.out_shm = UntrackedSharedMemory(name=f"out-{self.name}", create=False)
 | 
						|
        self.out_np_shm = np.ndarray((20, 6), dtype=np.float32, buffer=self.out_shm.buf)
 | 
						|
 | 
						|
    def detect(self, tensor_input, threshold=0.4):
 | 
						|
        detections = []
 | 
						|
 | 
						|
        if self.stop_event.is_set():
 | 
						|
            return detections
 | 
						|
 | 
						|
        # copy input to shared memory
 | 
						|
        self.np_shm[:] = tensor_input[:]
 | 
						|
        self.event.clear()
 | 
						|
        self.detection_queue.put(self.name)
 | 
						|
        result = self.event.wait(timeout=5.0)
 | 
						|
 | 
						|
        # if it timed out
 | 
						|
        if result is None:
 | 
						|
            return detections
 | 
						|
 | 
						|
        for d in self.out_np_shm:
 | 
						|
            if d[1] < threshold:
 | 
						|
                break
 | 
						|
            detections.append(
 | 
						|
                (self.labels[int(d[0])], float(d[1]), (d[2], d[3], d[4], d[5]))
 | 
						|
            )
 | 
						|
        self.fps.update()
 | 
						|
        return detections
 | 
						|
 | 
						|
    def cleanup(self):
 | 
						|
        self.shm.unlink()
 | 
						|
        self.out_shm.unlink()
 |