mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-26 19:06:11 +01:00
cffc431bf0
* POC: Added FastAPI with one endpoint (get /logs/service) * POC: Revert error_log * POC: Converted preview related endpoints to FastAPI * POC: Converted two more endpoints to FastAPI * POC: lint * Convert all media endpoints to FastAPI. Added /media prefix (/media/camera && media/events && /media/preview) * Convert all notifications API endpoints to FastAPI * Convert first review API endpoints to FastAPI * Convert remaining review API endpoints to FastAPI * Convert export endpoints to FastAPI * Fix path parameters * Convert events endpoints to FastAPI * Use body for multiple events endpoints * Use body for multiple events endpoints (create and end event) * Convert app endpoints to FastAPI * Convert app endpoints to FastAPI * Convert auth endpoints to FastAPI * Removed flask app in favour of FastAPI app. Implemented FastAPI middleware to check CSRF, connect and disconnect from DB. Added middleware x-forwared-for headers * Added starlette plugin to expose custom headers * Use slowapi as the limiter * Use query parameters for the frame latest endpoint * Use query parameters for the media snapshot.jpg endpoint * Use query parameters for the media MJPEG feed endpoint * Revert initial nginx.conf change * Added missing even_id for /events/search endpoint * Removed left over comment * Use FastAPI TestClient * severity query parameter should be a string * Use the same pattern for all tests * Fix endpoint * Revert media routers to old names. Order routes to make sure the dynamic ones from media.py are only used whenever there's no match on auth/etc * Reverted paths for media on tsx files * Deleted file * Fix test_http to use TestClient * Formatting * Bind timeline to DB * Fix http tests * Replace filename with pathvalidate * Fix latest.ext handling and disable uvicorn access logs * Add cosntraints to api provided values * Formatting * Remove unused * Remove unused * Get rate limiter working --------- Co-authored-by: Nicolas Mowen <nickmowen213@gmail.com>
594 lines
17 KiB
Python
594 lines
17 KiB
Python
"""Review apis."""
|
|
|
|
import logging
|
|
from functools import reduce
|
|
from pathlib import Path
|
|
|
|
import pandas as pd
|
|
from fastapi import APIRouter
|
|
from fastapi.params import Depends
|
|
from fastapi.responses import JSONResponse
|
|
from peewee import Case, DoesNotExist, fn, operator
|
|
from playhouse.shortcuts import model_to_dict
|
|
|
|
from frigate.api.defs.review_query_parameters import (
|
|
ReviewActivityMotionQueryParams,
|
|
ReviewQueryParams,
|
|
ReviewSummaryQueryParams,
|
|
)
|
|
from frigate.api.defs.tags import Tags
|
|
from frigate.models import Recordings, ReviewSegment
|
|
from frigate.util.builtin import get_tz_modifiers
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
router = APIRouter(tags=[Tags.review])
|
|
|
|
|
|
@router.get("/review")
|
|
def review(params: ReviewQueryParams = Depends()):
|
|
cameras = params.cameras
|
|
labels = params.labels
|
|
zones = params.zones
|
|
reviewed = params.reviewed
|
|
limit = params.limit
|
|
severity = params.severity
|
|
before = params.before
|
|
after = params.after
|
|
|
|
clauses = [
|
|
(
|
|
(ReviewSegment.start_time > after)
|
|
& (
|
|
(ReviewSegment.end_time.is_null(True))
|
|
| (ReviewSegment.end_time < before)
|
|
)
|
|
)
|
|
]
|
|
|
|
if cameras != "all":
|
|
camera_list = cameras.split(",")
|
|
clauses.append((ReviewSegment.camera << camera_list))
|
|
|
|
if labels != "all":
|
|
# use matching so segments with multiple labels
|
|
# still match on a search where any label matches
|
|
label_clauses = []
|
|
filtered_labels = labels.split(",")
|
|
|
|
for label in filtered_labels:
|
|
label_clauses.append(
|
|
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
|
|
| (ReviewSegment.data["audio"].cast("text") % f'*"{label}"*')
|
|
)
|
|
|
|
label_clause = reduce(operator.or_, label_clauses)
|
|
clauses.append((label_clause))
|
|
|
|
if zones != "all":
|
|
# use matching so segments with multiple zones
|
|
# still match on a search where any zone matches
|
|
zone_clauses = []
|
|
filtered_zones = zones.split(",")
|
|
|
|
for zone in filtered_zones:
|
|
zone_clauses.append(
|
|
(ReviewSegment.data["zones"].cast("text") % f'*"{zone}"*')
|
|
)
|
|
|
|
zone_clause = reduce(operator.or_, zone_clauses)
|
|
clauses.append((zone_clause))
|
|
|
|
if reviewed == 0:
|
|
clauses.append((ReviewSegment.has_been_reviewed == False))
|
|
|
|
if severity:
|
|
clauses.append((ReviewSegment.severity == severity))
|
|
|
|
review = (
|
|
ReviewSegment.select()
|
|
.where(reduce(operator.and_, clauses))
|
|
.order_by(ReviewSegment.severity.asc())
|
|
.order_by(ReviewSegment.start_time.desc())
|
|
.limit(limit)
|
|
.dicts()
|
|
.iterator()
|
|
)
|
|
|
|
return JSONResponse(content=[r for r in review])
|
|
|
|
|
|
@router.get("/review/event/{event_id}")
|
|
def get_review_from_event(event_id: str):
|
|
try:
|
|
return model_to_dict(
|
|
ReviewSegment.get(
|
|
ReviewSegment.data["detections"].cast("text") % f'*"{event_id}"*'
|
|
)
|
|
)
|
|
except DoesNotExist:
|
|
return "Review item not found", 404
|
|
|
|
|
|
@router.get("/review/{event_id}")
|
|
def get_review(event_id: str):
|
|
try:
|
|
return model_to_dict(ReviewSegment.get(ReviewSegment.id == event_id))
|
|
except DoesNotExist:
|
|
return "Review item not found", 404
|
|
|
|
|
|
@router.get("/review/summary")
|
|
def review_summary(params: ReviewSummaryQueryParams = Depends()):
|
|
hour_modifier, minute_modifier, seconds_offset = get_tz_modifiers(params.timezone)
|
|
day_ago = params.day_ago
|
|
month_ago = params.month_ago
|
|
|
|
cameras = params.cameras
|
|
labels = params.labels
|
|
zones = params.zones
|
|
|
|
clauses = [(ReviewSegment.start_time > day_ago)]
|
|
|
|
if cameras != "all":
|
|
camera_list = cameras.split(",")
|
|
clauses.append((ReviewSegment.camera << camera_list))
|
|
|
|
if labels != "all":
|
|
# use matching so segments with multiple labels
|
|
# still match on a search where any label matches
|
|
label_clauses = []
|
|
filtered_labels = labels.split(",")
|
|
|
|
for label in filtered_labels:
|
|
label_clauses.append(
|
|
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
|
|
| (ReviewSegment.data["audio"].cast("text") % f'*"{label}"*')
|
|
)
|
|
|
|
label_clause = reduce(operator.or_, label_clauses)
|
|
clauses.append((label_clause))
|
|
|
|
if zones != "all":
|
|
# use matching so segments with multiple zones
|
|
# still match on a search where any zone matches
|
|
zone_clauses = []
|
|
filtered_zones = zones.split(",")
|
|
|
|
for zone in filtered_zones:
|
|
zone_clauses.append(
|
|
(ReviewSegment.data["zones"].cast("text") % f'*"{zone}"*')
|
|
)
|
|
|
|
zone_clause = reduce(operator.or_, zone_clauses)
|
|
clauses.append((zone_clause))
|
|
|
|
last_24 = (
|
|
ReviewSegment.select(
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "alert"),
|
|
ReviewSegment.has_been_reviewed,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("reviewed_alert"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "detection"),
|
|
ReviewSegment.has_been_reviewed,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("reviewed_detection"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "significant_motion"),
|
|
ReviewSegment.has_been_reviewed,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("reviewed_motion"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "alert"),
|
|
1,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("total_alert"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "detection"),
|
|
1,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("total_detection"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "significant_motion"),
|
|
1,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("total_motion"),
|
|
)
|
|
.where(reduce(operator.and_, clauses))
|
|
.dicts()
|
|
.get()
|
|
)
|
|
|
|
clauses = [(ReviewSegment.start_time > month_ago)]
|
|
|
|
if cameras != "all":
|
|
camera_list = cameras.split(",")
|
|
clauses.append((ReviewSegment.camera << camera_list))
|
|
|
|
if labels != "all":
|
|
# use matching so segments with multiple labels
|
|
# still match on a search where any label matches
|
|
label_clauses = []
|
|
filtered_labels = labels.split(",")
|
|
|
|
for label in filtered_labels:
|
|
label_clauses.append(
|
|
(ReviewSegment.data["objects"].cast("text") % f'*"{label}"*')
|
|
)
|
|
|
|
label_clause = reduce(operator.or_, label_clauses)
|
|
clauses.append((label_clause))
|
|
|
|
last_month = (
|
|
ReviewSegment.select(
|
|
fn.strftime(
|
|
"%Y-%m-%d",
|
|
fn.datetime(
|
|
ReviewSegment.start_time,
|
|
"unixepoch",
|
|
hour_modifier,
|
|
minute_modifier,
|
|
),
|
|
).alias("day"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "alert"),
|
|
ReviewSegment.has_been_reviewed,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("reviewed_alert"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "detection"),
|
|
ReviewSegment.has_been_reviewed,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("reviewed_detection"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "significant_motion"),
|
|
ReviewSegment.has_been_reviewed,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("reviewed_motion"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "alert"),
|
|
1,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("total_alert"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "detection"),
|
|
1,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("total_detection"),
|
|
fn.SUM(
|
|
Case(
|
|
None,
|
|
[
|
|
(
|
|
(ReviewSegment.severity == "significant_motion"),
|
|
1,
|
|
)
|
|
],
|
|
0,
|
|
)
|
|
).alias("total_motion"),
|
|
)
|
|
.where(reduce(operator.and_, clauses))
|
|
.group_by(
|
|
(ReviewSegment.start_time + seconds_offset).cast("int") / (3600 * 24),
|
|
)
|
|
.order_by(ReviewSegment.start_time.desc())
|
|
)
|
|
|
|
data = {
|
|
"last24Hours": last_24,
|
|
}
|
|
|
|
for e in last_month.dicts().iterator():
|
|
data[e["day"]] = e
|
|
|
|
return JSONResponse(content=data)
|
|
|
|
|
|
@router.post("/reviews/viewed")
|
|
def set_multiple_reviewed(body: dict = None):
|
|
json: dict[str, any] = body or {}
|
|
list_of_ids = json.get("ids", "")
|
|
|
|
if not list_of_ids or len(list_of_ids) == 0:
|
|
return JSONResponse(
|
|
context=({"success": False, "message": "Not a valid list of ids"}),
|
|
status_code=404,
|
|
)
|
|
|
|
ReviewSegment.update(has_been_reviewed=True).where(
|
|
ReviewSegment.id << list_of_ids
|
|
).execute()
|
|
|
|
return JSONResponse(
|
|
content=({"success": True, "message": "Reviewed multiple items"}),
|
|
status_code=200,
|
|
)
|
|
|
|
|
|
@router.delete("/review/{event_id}/viewed")
|
|
def set_not_reviewed(event_id: str):
|
|
try:
|
|
review: ReviewSegment = ReviewSegment.get(ReviewSegment.id == event_id)
|
|
except DoesNotExist:
|
|
return JSONResponse(
|
|
content=(
|
|
{"success": False, "message": "Review " + event_id + " not found"}
|
|
),
|
|
status_code=404,
|
|
)
|
|
|
|
review.has_been_reviewed = False
|
|
review.save()
|
|
|
|
return JSONResponse(
|
|
content=({"success": True, "message": "Reviewed " + event_id + " not viewed"}),
|
|
status_code=200,
|
|
)
|
|
|
|
|
|
@router.post("/reviews/delete")
|
|
def delete_reviews(body: dict = None):
|
|
json: dict[str, any] = body or {}
|
|
list_of_ids = json.get("ids", "")
|
|
|
|
if not list_of_ids or len(list_of_ids) == 0:
|
|
return JSONResponse(
|
|
content=({"success": False, "message": "Not a valid list of ids"}),
|
|
status_code=404,
|
|
)
|
|
|
|
reviews = (
|
|
ReviewSegment.select(
|
|
ReviewSegment.camera,
|
|
ReviewSegment.start_time,
|
|
ReviewSegment.end_time,
|
|
)
|
|
.where(ReviewSegment.id << list_of_ids)
|
|
.dicts()
|
|
.iterator()
|
|
)
|
|
recording_ids = []
|
|
|
|
for review in reviews:
|
|
start_time = review["start_time"]
|
|
end_time = review["end_time"]
|
|
camera_name = review["camera"]
|
|
recordings = (
|
|
Recordings.select(Recordings.id, Recordings.path)
|
|
.where(
|
|
Recordings.start_time.between(start_time, end_time)
|
|
| Recordings.end_time.between(start_time, end_time)
|
|
| (
|
|
(start_time > Recordings.start_time)
|
|
& (end_time < Recordings.end_time)
|
|
)
|
|
)
|
|
.where(Recordings.camera == camera_name)
|
|
.dicts()
|
|
.iterator()
|
|
)
|
|
|
|
for recording in recordings:
|
|
Path(recording["path"]).unlink(missing_ok=True)
|
|
recording_ids.append(recording["id"])
|
|
|
|
# delete recordings and review segments
|
|
Recordings.delete().where(Recordings.id << recording_ids).execute()
|
|
ReviewSegment.delete().where(ReviewSegment.id << list_of_ids).execute()
|
|
|
|
return JSONResponse(
|
|
content=({"success": True, "message": "Delete reviews"}), status_code=200
|
|
)
|
|
|
|
|
|
@router.get("/review/activity/motion")
|
|
def motion_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
|
"""Get motion and audio activity."""
|
|
cameras = params.cameras
|
|
before = params.before
|
|
after = params.after
|
|
# get scale in seconds
|
|
scale = params.scale
|
|
|
|
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
|
|
clauses.append((Recordings.motion > 0))
|
|
|
|
if cameras != "all":
|
|
camera_list = cameras.split(",")
|
|
clauses.append((Recordings.camera << camera_list))
|
|
|
|
data: list[Recordings] = (
|
|
Recordings.select(
|
|
Recordings.camera,
|
|
Recordings.start_time,
|
|
Recordings.motion,
|
|
)
|
|
.where(reduce(operator.and_, clauses))
|
|
.order_by(Recordings.start_time.asc())
|
|
.dicts()
|
|
.iterator()
|
|
)
|
|
|
|
# resample data using pandas to get activity on scaled basis
|
|
df = pd.DataFrame(data, columns=["start_time", "motion", "camera"])
|
|
|
|
if df.empty:
|
|
logger.warning("No motion data found for the requested time range")
|
|
return JSONResponse(content=[])
|
|
|
|
df = df.astype(dtype={"motion": "float32"})
|
|
|
|
# set date as datetime index
|
|
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
|
|
df.set_index(["start_time"], inplace=True)
|
|
|
|
# normalize data
|
|
motion = (
|
|
df["motion"]
|
|
.resample(f"{scale}s")
|
|
.apply(lambda x: max(x, key=abs, default=0.0))
|
|
.fillna(0.0)
|
|
.to_frame()
|
|
)
|
|
cameras = df["camera"].resample(f"{scale}s").agg(lambda x: ",".join(set(x)))
|
|
df = motion.join(cameras)
|
|
|
|
length = df.shape[0]
|
|
chunk = int(60 * (60 / scale))
|
|
|
|
for i in range(0, length, chunk):
|
|
part = df.iloc[i : i + chunk]
|
|
min_val, max_val = part["motion"].min(), part["motion"].max()
|
|
if min_val != max_val:
|
|
df.iloc[i : i + chunk, 0] = (
|
|
part["motion"].sub(min_val).div(max_val - min_val).mul(100).fillna(0)
|
|
)
|
|
else:
|
|
df.iloc[i : i + chunk, 0] = 0.0
|
|
|
|
# change types for output
|
|
df.index = df.index.astype(int) // (10**9)
|
|
normalized = df.reset_index().to_dict("records")
|
|
return JSONResponse(content=normalized)
|
|
|
|
|
|
@router.get("/review/activity/audio")
|
|
def audio_activity(params: ReviewActivityMotionQueryParams = Depends()):
|
|
"""Get motion and audio activity."""
|
|
cameras = params.cameras
|
|
before = params.before
|
|
after = params.after
|
|
# get scale in seconds
|
|
scale = params.scale
|
|
|
|
clauses = [(Recordings.start_time > after) & (Recordings.end_time < before)]
|
|
|
|
if cameras != "all":
|
|
camera_list = cameras.split(",")
|
|
clauses.append((Recordings.camera << camera_list))
|
|
|
|
all_recordings: list[Recordings] = (
|
|
Recordings.select(
|
|
Recordings.start_time,
|
|
Recordings.duration,
|
|
Recordings.objects,
|
|
Recordings.dBFS,
|
|
)
|
|
.where(reduce(operator.and_, clauses))
|
|
.order_by(Recordings.start_time.asc())
|
|
.iterator()
|
|
)
|
|
|
|
# format is: { timestamp: segment_start_ts, motion: [0-100], audio: [0 - -100] }
|
|
# periods where active objects / audio was detected will cause audio to be scaled down
|
|
data: list[dict[str, float]] = []
|
|
|
|
for rec in all_recordings:
|
|
data.append(
|
|
{
|
|
"start_time": rec.start_time,
|
|
"audio": rec.dBFS if rec.objects == 0 else 0,
|
|
}
|
|
)
|
|
|
|
# resample data using pandas to get activity on scaled basis
|
|
df = pd.DataFrame(data, columns=["start_time", "audio"])
|
|
df = df.astype(dtype={"audio": "float16"})
|
|
|
|
# set date as datetime index
|
|
df["start_time"] = pd.to_datetime(df["start_time"], unit="s")
|
|
df.set_index(["start_time"], inplace=True)
|
|
|
|
# normalize data
|
|
df = df.resample(f"{scale}S").mean().fillna(0.0)
|
|
df["audio"] = (
|
|
(df["audio"] - df["audio"].max())
|
|
/ (df["audio"].min() - df["audio"].max())
|
|
* -100
|
|
)
|
|
|
|
# change types for output
|
|
df.index = df.index.astype(int) // (10**9)
|
|
normalized = df.reset_index().to_dict("records")
|
|
return JSONResponse(content=normalized)
|