mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-01-21 00:06:44 +01:00
ead03c381b
* add zoom factor and catch motion exception * reword error message * check euclidean distance of estimate points * use numpy for euclidean distance * config entry * use zoom factor and zoom based on velocity * move debug inside try * change log type to info * logger level warning * docs * exception handling
808 lines
33 KiB
Python
808 lines
33 KiB
Python
"""Automatically pan, tilt, and zoom on detected objects via onvif."""
|
|
|
|
import copy
|
|
import logging
|
|
import os
|
|
import queue
|
|
import threading
|
|
import time
|
|
from functools import partial
|
|
from multiprocessing.synchronize import Event as MpEvent
|
|
|
|
import cv2
|
|
import numpy as np
|
|
from norfair.camera_motion import (
|
|
HomographyTransformationGetter,
|
|
MotionEstimator,
|
|
TranslationTransformationGetter,
|
|
)
|
|
|
|
from frigate.config import CameraConfig, FrigateConfig, ZoomingModeEnum
|
|
from frigate.const import CONFIG_DIR
|
|
from frigate.ptz.onvif import OnvifController
|
|
from frigate.types import PTZMetricsTypes
|
|
from frigate.util.builtin import update_yaml_file
|
|
from frigate.util.image import SharedMemoryFrameManager, intersection_over_union
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def ptz_moving_at_frame_time(frame_time, ptz_start_time, ptz_stop_time):
|
|
# Determine if the PTZ was in motion at the set frame time
|
|
# for non ptz/autotracking cameras, this will always return False
|
|
# ptz_start_time is initialized to 0 on startup and only changes
|
|
# when autotracking movements are made
|
|
return (ptz_start_time != 0.0 and frame_time > ptz_start_time) and (
|
|
ptz_stop_time == 0.0 or (ptz_start_time <= frame_time <= ptz_stop_time)
|
|
)
|
|
|
|
|
|
class PtzMotionEstimator:
|
|
def __init__(
|
|
self, config: CameraConfig, ptz_metrics: dict[str, PTZMetricsTypes]
|
|
) -> None:
|
|
self.frame_manager = SharedMemoryFrameManager()
|
|
self.norfair_motion_estimator = None
|
|
self.camera_config = config
|
|
self.coord_transformations = None
|
|
self.ptz_metrics = ptz_metrics
|
|
self.ptz_start_time = self.ptz_metrics["ptz_start_time"]
|
|
self.ptz_stop_time = self.ptz_metrics["ptz_stop_time"]
|
|
|
|
self.ptz_metrics["ptz_reset"].set()
|
|
logger.debug(f"Motion estimator init for cam: {config.name}")
|
|
|
|
def motion_estimator(self, detections, frame_time, camera_name):
|
|
# If we've just started up or returned to our preset, reset motion estimator for new tracking session
|
|
if self.ptz_metrics["ptz_reset"].is_set():
|
|
self.ptz_metrics["ptz_reset"].clear()
|
|
|
|
# homography is nice (zooming) but slow, translation is pan/tilt only but fast.
|
|
if (
|
|
self.camera_config.onvif.autotracking.zooming
|
|
!= ZoomingModeEnum.disabled
|
|
):
|
|
logger.debug("Motion estimator reset - homography")
|
|
transformation_type = HomographyTransformationGetter()
|
|
else:
|
|
logger.debug("Motion estimator reset - translation")
|
|
transformation_type = TranslationTransformationGetter()
|
|
|
|
self.norfair_motion_estimator = MotionEstimator(
|
|
transformations_getter=transformation_type,
|
|
min_distance=30,
|
|
max_points=900,
|
|
)
|
|
|
|
self.coord_transformations = None
|
|
|
|
if ptz_moving_at_frame_time(
|
|
frame_time, self.ptz_start_time.value, self.ptz_stop_time.value
|
|
):
|
|
logger.debug(
|
|
f"Motion estimator running for {camera_name} - frame time: {frame_time}, {self.ptz_start_time.value}, {self.ptz_stop_time.value}"
|
|
)
|
|
|
|
frame_id = f"{camera_name}{frame_time}"
|
|
yuv_frame = self.frame_manager.get(
|
|
frame_id, self.camera_config.frame_shape_yuv
|
|
)
|
|
|
|
frame = cv2.cvtColor(yuv_frame, cv2.COLOR_YUV2GRAY_I420)
|
|
|
|
# mask out detections for better motion estimation
|
|
mask = np.ones(frame.shape[:2], frame.dtype)
|
|
|
|
detection_boxes = [x[2] for x in detections]
|
|
for detection in detection_boxes:
|
|
x1, y1, x2, y2 = detection
|
|
mask[y1:y2, x1:x2] = 0
|
|
|
|
# merge camera config motion mask with detections. Norfair function needs 0,1 mask
|
|
mask = np.bitwise_and(mask, self.camera_config.motion.mask).clip(max=1)
|
|
|
|
# Norfair estimator function needs color so it can convert it right back to gray
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGRA)
|
|
|
|
try:
|
|
self.coord_transformations = self.norfair_motion_estimator.update(
|
|
frame, mask
|
|
)
|
|
logger.debug(
|
|
f"Motion estimator transformation: {self.coord_transformations.rel_to_abs([[0,0]])}"
|
|
)
|
|
except Exception:
|
|
# sometimes opencv can't find enough features in the image to find homography, so catch this error
|
|
logger.warning(
|
|
f"Autotracker: motion estimator couldn't get transformations for {camera_name} at frame time {frame_time}"
|
|
)
|
|
self.coord_transformations = None
|
|
|
|
self.frame_manager.close(frame_id)
|
|
|
|
return self.coord_transformations
|
|
|
|
|
|
class PtzAutoTrackerThread(threading.Thread):
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
onvif: OnvifController,
|
|
ptz_metrics: dict[str, PTZMetricsTypes],
|
|
stop_event: MpEvent,
|
|
) -> None:
|
|
threading.Thread.__init__(self)
|
|
self.name = "ptz_autotracker"
|
|
self.ptz_autotracker = PtzAutoTracker(config, onvif, ptz_metrics)
|
|
self.stop_event = stop_event
|
|
self.config = config
|
|
|
|
def run(self):
|
|
while not self.stop_event.wait(1):
|
|
for camera_name, cam in self.config.cameras.items():
|
|
if not cam.enabled:
|
|
continue
|
|
|
|
if cam.onvif.autotracking.enabled:
|
|
self.ptz_autotracker.camera_maintenance(camera_name)
|
|
else:
|
|
# disabled dynamically by mqtt
|
|
if self.ptz_autotracker.tracked_object.get(camera_name):
|
|
self.ptz_autotracker.tracked_object[camera_name] = None
|
|
self.ptz_autotracker.tracked_object_previous[camera_name] = None
|
|
|
|
logger.info("Exiting autotracker...")
|
|
|
|
|
|
class PtzAutoTracker:
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
onvif: OnvifController,
|
|
ptz_metrics: PTZMetricsTypes,
|
|
) -> None:
|
|
self.config = config
|
|
self.onvif = onvif
|
|
self.ptz_metrics = ptz_metrics
|
|
self.tracked_object: dict[str, object] = {}
|
|
self.tracked_object_previous: dict[str, object] = {}
|
|
self.previous_frame_time: dict[str, object] = {}
|
|
self.object_types: dict[str, object] = {}
|
|
self.required_zones: dict[str, object] = {}
|
|
self.move_queues: dict[str, object] = {}
|
|
self.move_queue_locks: dict[str, object] = {}
|
|
self.move_threads: dict[str, object] = {}
|
|
self.autotracker_init: dict[str, object] = {}
|
|
self.move_metrics: dict[str, object] = {}
|
|
self.calibrating: dict[str, object] = {}
|
|
self.intercept: dict[str, object] = {}
|
|
self.move_coefficients: dict[str, object] = {}
|
|
self.zoom_factor: dict[str, object] = {}
|
|
|
|
# if cam is set to autotrack, onvif should be set up
|
|
for camera_name, cam in self.config.cameras.items():
|
|
if not cam.enabled:
|
|
continue
|
|
|
|
self.autotracker_init[camera_name] = False
|
|
if cam.onvif.autotracking.enabled:
|
|
self._autotracker_setup(cam, camera_name)
|
|
|
|
def _autotracker_setup(self, cam, camera_name):
|
|
logger.debug(f"Autotracker init for cam: {camera_name}")
|
|
|
|
self.object_types[camera_name] = cam.onvif.autotracking.track
|
|
self.required_zones[camera_name] = cam.onvif.autotracking.required_zones
|
|
self.zoom_factor[camera_name] = cam.onvif.autotracking.zoom_factor
|
|
|
|
self.tracked_object[camera_name] = None
|
|
self.tracked_object_previous[camera_name] = None
|
|
|
|
self.calibrating[camera_name] = False
|
|
self.move_metrics[camera_name] = []
|
|
self.intercept[camera_name] = None
|
|
self.move_coefficients[camera_name] = []
|
|
|
|
self.move_queues[camera_name] = queue.Queue()
|
|
self.move_queue_locks[camera_name] = threading.Lock()
|
|
|
|
if not self.onvif.cams[camera_name]["init"]:
|
|
if not self.onvif._init_onvif(camera_name):
|
|
logger.warning(f"Unable to initialize onvif for {camera_name}")
|
|
cam.onvif.autotracking.enabled = False
|
|
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
|
|
|
|
return
|
|
|
|
if "pt-r-fov" not in self.onvif.cams[camera_name]["features"]:
|
|
cam.onvif.autotracking.enabled = False
|
|
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
|
|
logger.warning(
|
|
f"Disabling autotracking for {camera_name}: FOV relative movement not supported"
|
|
)
|
|
|
|
return
|
|
|
|
movestatus_supported = self.onvif.get_service_capabilities(camera_name)
|
|
|
|
if movestatus_supported is None or movestatus_supported.lower() != "true":
|
|
cam.onvif.autotracking.enabled = False
|
|
self.ptz_metrics[camera_name]["ptz_autotracker_enabled"].value = False
|
|
logger.warning(
|
|
f"Disabling autotracking for {camera_name}: ONVIF MoveStatus not supported"
|
|
)
|
|
|
|
return
|
|
|
|
self.onvif.get_camera_status(camera_name)
|
|
|
|
# movement thread per camera
|
|
if not self.move_threads or not self.move_threads[camera_name]:
|
|
self.move_threads[camera_name] = threading.Thread(
|
|
name=f"move_thread_{camera_name}",
|
|
target=partial(self._process_move_queue, camera_name),
|
|
)
|
|
self.move_threads[camera_name].daemon = True
|
|
self.move_threads[camera_name].start()
|
|
|
|
if cam.onvif.autotracking.movement_weights:
|
|
self.intercept[camera_name] = cam.onvif.autotracking.movement_weights[0]
|
|
self.move_coefficients[
|
|
camera_name
|
|
] = cam.onvif.autotracking.movement_weights[1:]
|
|
|
|
if cam.onvif.autotracking.calibrate_on_startup:
|
|
self._calibrate_camera(camera_name)
|
|
|
|
self.autotracker_init[camera_name] = True
|
|
|
|
def write_config(self, camera):
|
|
config_file = os.environ.get("CONFIG_FILE", f"{CONFIG_DIR}/config.yml")
|
|
|
|
logger.debug(
|
|
f"Writing new config with autotracker motion coefficients: {self.config.cameras[camera].onvif.autotracking.movement_weights}"
|
|
)
|
|
|
|
update_yaml_file(
|
|
config_file,
|
|
["cameras", camera, "onvif", "autotracking", "movement_weights"],
|
|
self.config.cameras[camera].onvif.autotracking.movement_weights,
|
|
)
|
|
|
|
def _calibrate_camera(self, camera):
|
|
# move the camera from the preset in steps and measure the time it takes to move that amount
|
|
# this will allow us to predict movement times with a simple linear regression
|
|
# start with 0 so we can determine a baseline (to be used as the intercept in the regression calc)
|
|
# TODO: take zooming into account too
|
|
num_steps = 30
|
|
step_sizes = np.linspace(0, 1, num_steps)
|
|
|
|
self.calibrating[camera] = True
|
|
|
|
logger.info(f"Camera calibration for {camera} in progress")
|
|
|
|
self.onvif._move_to_preset(
|
|
camera,
|
|
self.config.cameras[camera].onvif.autotracking.return_preset.lower(),
|
|
)
|
|
self.ptz_metrics[camera]["ptz_reset"].set()
|
|
self.ptz_metrics[camera]["ptz_stopped"].clear()
|
|
|
|
# Wait until the camera finishes moving
|
|
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
|
|
self.onvif.get_camera_status(camera)
|
|
|
|
for step in range(num_steps):
|
|
pan = step_sizes[step]
|
|
tilt = step_sizes[step]
|
|
|
|
start_time = time.time()
|
|
self.onvif._move_relative(camera, pan, tilt, 0, 1)
|
|
|
|
# Wait until the camera finishes moving
|
|
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
|
|
self.onvif.get_camera_status(camera)
|
|
stop_time = time.time()
|
|
|
|
self.move_metrics[camera].append(
|
|
{
|
|
"pan": pan,
|
|
"tilt": tilt,
|
|
"start_timestamp": start_time,
|
|
"end_timestamp": stop_time,
|
|
}
|
|
)
|
|
|
|
self.onvif._move_to_preset(
|
|
camera,
|
|
self.config.cameras[camera].onvif.autotracking.return_preset.lower(),
|
|
)
|
|
self.ptz_metrics[camera]["ptz_reset"].set()
|
|
self.ptz_metrics[camera]["ptz_stopped"].clear()
|
|
|
|
# Wait until the camera finishes moving
|
|
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
|
|
self.onvif.get_camera_status(camera)
|
|
|
|
self.calibrating[camera] = False
|
|
|
|
logger.info(f"Calibration for {camera} complete")
|
|
|
|
# calculate and save new intercept and coefficients
|
|
self._calculate_move_coefficients(camera, True)
|
|
|
|
def _calculate_move_coefficients(self, camera, calibration=False):
|
|
# calculate new coefficients when we have 50 more new values. Save up to 500
|
|
if calibration or (
|
|
len(self.move_metrics[camera]) % 50 == 0
|
|
and len(self.move_metrics[camera]) != 0
|
|
and len(self.move_metrics[camera]) <= 500
|
|
):
|
|
X = np.array(
|
|
[abs(d["pan"]) + abs(d["tilt"]) for d in self.move_metrics[camera]]
|
|
)
|
|
y = np.array(
|
|
[
|
|
d["end_timestamp"] - d["start_timestamp"]
|
|
for d in self.move_metrics[camera]
|
|
]
|
|
)
|
|
|
|
# simple linear regression with intercept
|
|
X_with_intercept = np.column_stack((np.ones(X.shape[0]), X))
|
|
self.move_coefficients[camera] = np.linalg.lstsq(
|
|
X_with_intercept, y, rcond=None
|
|
)[0]
|
|
|
|
# only assign a new intercept if we're calibrating
|
|
if calibration:
|
|
self.intercept[camera] = y[0]
|
|
|
|
# write the intercept and coefficients back to the config file as a comma separated string
|
|
movement_weights = np.concatenate(
|
|
([self.intercept[camera]], self.move_coefficients[camera])
|
|
)
|
|
self.config.cameras[camera].onvif.autotracking.movement_weights = ", ".join(
|
|
map(str, movement_weights)
|
|
)
|
|
|
|
logger.debug(
|
|
f"New regression parameters - intercept: {self.intercept[camera]}, coefficients: {self.move_coefficients[camera]}"
|
|
)
|
|
|
|
self.write_config(camera)
|
|
|
|
def _predict_movement_time(self, camera, pan, tilt):
|
|
combined_movement = abs(pan) + abs(tilt)
|
|
input_data = np.array([self.intercept[camera], combined_movement])
|
|
|
|
return np.dot(self.move_coefficients[camera], input_data)
|
|
|
|
def _process_move_queue(self, camera):
|
|
while True:
|
|
move_data = self.move_queues[camera].get()
|
|
|
|
with self.move_queue_locks[camera]:
|
|
frame_time, pan, tilt, zoom = move_data
|
|
|
|
# if we're receiving move requests during a PTZ move, ignore them
|
|
if ptz_moving_at_frame_time(
|
|
frame_time,
|
|
self.ptz_metrics[camera]["ptz_start_time"].value,
|
|
self.ptz_metrics[camera]["ptz_stop_time"].value,
|
|
):
|
|
# instead of dequeueing this might be a good place to preemptively move based
|
|
# on an estimate - for fast moving objects, etc.
|
|
logger.debug(
|
|
f"Move queue: PTZ moving, dequeueing move request - frame time: {frame_time}, final pan: {pan}, final tilt: {tilt}, final zoom: {zoom}"
|
|
)
|
|
continue
|
|
|
|
else:
|
|
if (
|
|
self.config.cameras[camera].onvif.autotracking.zooming
|
|
== ZoomingModeEnum.relative
|
|
):
|
|
self.onvif._move_relative(camera, pan, tilt, zoom, 1)
|
|
else:
|
|
if zoom > 0:
|
|
self.onvif._zoom_absolute(camera, zoom, 1)
|
|
else:
|
|
self.onvif._move_relative(camera, pan, tilt, 0, 1)
|
|
|
|
# Wait until the camera finishes moving
|
|
while not self.ptz_metrics[camera]["ptz_stopped"].is_set():
|
|
# check if ptz is moving
|
|
self.onvif.get_camera_status(camera)
|
|
|
|
if self.config.cameras[camera].onvif.autotracking.movement_weights:
|
|
logger.debug(
|
|
f"Predicted movement time: {self._predict_movement_time(camera, pan, tilt)}"
|
|
)
|
|
logger.debug(
|
|
f'Actual movement time: {self.ptz_metrics[camera]["ptz_stop_time"].value-self.ptz_metrics[camera]["ptz_start_time"].value}'
|
|
)
|
|
|
|
# save metrics for better estimate calculations
|
|
if (
|
|
self.intercept[camera] is not None
|
|
and len(self.move_metrics[camera]) < 500
|
|
):
|
|
logger.debug("Adding new values to move metrics")
|
|
self.move_metrics[camera].append(
|
|
{
|
|
"pan": pan,
|
|
"tilt": tilt,
|
|
"start_timestamp": self.ptz_metrics[camera][
|
|
"ptz_start_time"
|
|
].value,
|
|
"end_timestamp": self.ptz_metrics[camera][
|
|
"ptz_stop_time"
|
|
].value,
|
|
}
|
|
)
|
|
|
|
# calculate new coefficients if we have enough data
|
|
self._calculate_move_coefficients(camera)
|
|
|
|
def _enqueue_move(self, camera, frame_time, pan, tilt, zoom):
|
|
def split_value(value):
|
|
clipped = np.clip(value, -1, 1)
|
|
return clipped, value - clipped
|
|
|
|
if (
|
|
frame_time > self.ptz_metrics[camera]["ptz_start_time"].value
|
|
and frame_time > self.ptz_metrics[camera]["ptz_stop_time"].value
|
|
and not self.move_queue_locks[camera].locked()
|
|
):
|
|
# don't make small movements
|
|
if abs(pan) < 0.02:
|
|
pan = 0
|
|
if abs(tilt) < 0.02:
|
|
tilt = 0
|
|
|
|
# split up any large moves caused by velocity estimated movements
|
|
while pan != 0 or tilt != 0 or zoom != 0:
|
|
pan, pan_excess = split_value(pan)
|
|
tilt, tilt_excess = split_value(tilt)
|
|
zoom, zoom_excess = split_value(zoom)
|
|
|
|
logger.debug(
|
|
f"Enqueue movement for frame time: {frame_time} pan: {pan}, enqueue tilt: {tilt}, enqueue zoom: {zoom}"
|
|
)
|
|
move_data = (frame_time, pan, tilt, zoom)
|
|
self.move_queues[camera].put(move_data)
|
|
|
|
pan = pan_excess
|
|
tilt = tilt_excess
|
|
zoom = zoom_excess
|
|
|
|
def _should_zoom_in(self, camera, box, area, average_velocity):
|
|
camera_config = self.config.cameras[camera]
|
|
camera_width = camera_config.frame_shape[1]
|
|
camera_height = camera_config.frame_shape[0]
|
|
camera_area = camera_width * camera_height
|
|
|
|
bb_left, bb_top, bb_right, bb_bottom = box
|
|
|
|
# If bounding box is not within 5% of an edge
|
|
# If object area is less than 70% of frame
|
|
# Then zoom in, otherwise try zooming out
|
|
# should we make these configurable?
|
|
#
|
|
# TODO: Take into account the area changing when an object is moving out of frame
|
|
edge_threshold = 0.15
|
|
area_threshold = self.zoom_factor[camera]
|
|
velocity_threshold = 0.1
|
|
|
|
# if we have a fast moving object, let's zoom out
|
|
# fast moving is defined as a velocity of more than 10% of the camera's width or height
|
|
# so an object with an x velocity of 15 pixels on a 1280x720 camera would trigger a zoom out
|
|
velocity_threshold = average_velocity[0] > (
|
|
camera_width * velocity_threshold
|
|
) or average_velocity[1] > (camera_height * velocity_threshold)
|
|
|
|
# returns True to zoom in, False to zoom out
|
|
return (
|
|
bb_left > edge_threshold * camera_width
|
|
and bb_right < (1 - edge_threshold) * camera_width
|
|
and bb_top > edge_threshold * camera_height
|
|
and bb_bottom < (1 - edge_threshold) * camera_height
|
|
and area < area_threshold * camera_area
|
|
and not velocity_threshold
|
|
)
|
|
|
|
def _autotrack_move_ptz(self, camera, obj):
|
|
camera_config = self.config.cameras[camera]
|
|
average_velocity = (0,) * 4
|
|
|
|
# # frame width and height
|
|
camera_width = camera_config.frame_shape[1]
|
|
camera_height = camera_config.frame_shape[0]
|
|
camera_fps = camera_config.detect.fps
|
|
|
|
centroid_x = obj.obj_data["centroid"][0]
|
|
centroid_y = obj.obj_data["centroid"][1]
|
|
|
|
# Normalize coordinates. top right of the fov is (1,1), center is (0,0), bottom left is (-1, -1).
|
|
pan = ((centroid_x / camera_width) - 0.5) * 2
|
|
tilt = (0.5 - (centroid_y / camera_height)) * 2
|
|
|
|
if (
|
|
camera_config.onvif.autotracking.movement_weights
|
|
): # use estimates if we have available coefficients
|
|
predicted_movement_time = self._predict_movement_time(camera, pan, tilt)
|
|
|
|
# Norfair gives us two points for the velocity of an object represented as x1, y1, x2, y2
|
|
x1, y1, x2, y2 = obj.obj_data["estimate_velocity"]
|
|
average_velocity = (
|
|
(x1 + x2) / 2,
|
|
(y1 + y2) / 2,
|
|
(x1 + x2) / 2,
|
|
(y1 + y2) / 2,
|
|
)
|
|
|
|
# get euclidean distance of the two points, sometimes the estimate is way off
|
|
distance = np.linalg.norm([x2 - x1, y2 - y1])
|
|
|
|
if distance <= 5:
|
|
# this box could exceed the frame boundaries if velocity is high
|
|
# but we'll handle that in _enqueue_move() as two separate moves
|
|
predicted_box = [
|
|
round(x + camera_fps * predicted_movement_time * v)
|
|
for x, v in zip(obj.obj_data["box"], average_velocity)
|
|
]
|
|
else:
|
|
# estimate was bad
|
|
predicted_box = obj.obj_data["box"]
|
|
|
|
centroid_x = round((predicted_box[0] + predicted_box[2]) / 2)
|
|
centroid_y = round((predicted_box[1] + predicted_box[3]) / 2)
|
|
|
|
# recalculate pan and tilt with new centroid
|
|
pan = ((centroid_x / camera_width) - 0.5) * 2
|
|
tilt = (0.5 - (centroid_y / camera_height)) * 2
|
|
|
|
logger.debug(f'Original box: {obj.obj_data["box"]}')
|
|
logger.debug(f"Predicted box: {predicted_box}")
|
|
logger.debug(f'Velocity: {obj.obj_data["estimate_velocity"]}')
|
|
|
|
if camera_config.onvif.autotracking.zooming == ZoomingModeEnum.relative:
|
|
# relative zooming concurrently with pan/tilt
|
|
zoom = min(
|
|
obj.obj_data["area"]
|
|
/ (camera_width * camera_height)
|
|
* 100
|
|
* self.zoom_factor[camera],
|
|
1,
|
|
)
|
|
|
|
logger.debug(f"Zoom value: {zoom}")
|
|
|
|
# test if we need to zoom out
|
|
if not self._should_zoom_in(
|
|
camera,
|
|
predicted_box
|
|
if camera_config.onvif.autotracking.movement_weights
|
|
else obj.obj_data["box"],
|
|
obj.obj_data["area"],
|
|
average_velocity,
|
|
):
|
|
zoom = -(1 - zoom)
|
|
|
|
# don't make small movements to zoom in if area hasn't changed significantly
|
|
# but always zoom out if necessary
|
|
if (
|
|
"area" in obj.previous
|
|
and abs(obj.obj_data["area"] - obj.previous["area"])
|
|
/ obj.obj_data["area"]
|
|
< 0.2
|
|
and zoom > 0
|
|
):
|
|
zoom = 0
|
|
else:
|
|
zoom = 0
|
|
|
|
self._enqueue_move(camera, obj.obj_data["frame_time"], pan, tilt, zoom)
|
|
|
|
def _autotrack_zoom_only(self, camera, obj):
|
|
camera_config = self.config.cameras[camera]
|
|
|
|
# absolute zooming separately from pan/tilt
|
|
if camera_config.onvif.autotracking.zooming == ZoomingModeEnum.absolute:
|
|
zoom_level = self.ptz_metrics[camera]["ptz_zoom_level"].value
|
|
|
|
if 0 < zoom_level <= 1:
|
|
if self._should_zoom_in(
|
|
camera, obj.obj_data["box"], obj.obj_data["area"], (0, 0, 0, 0)
|
|
):
|
|
zoom = min(1.0, zoom_level + 0.1)
|
|
else:
|
|
zoom = max(0.0, zoom_level - 0.1)
|
|
|
|
if zoom != zoom_level:
|
|
self._enqueue_move(camera, obj.obj_data["frame_time"], 0, 0, zoom)
|
|
|
|
def autotrack_object(self, camera, obj):
|
|
camera_config = self.config.cameras[camera]
|
|
|
|
if camera_config.onvif.autotracking.enabled:
|
|
if not self.autotracker_init[camera]:
|
|
self._autotracker_setup(self.config.cameras[camera], camera)
|
|
|
|
if self.calibrating[camera]:
|
|
logger.debug("Calibrating camera")
|
|
return
|
|
|
|
# either this is a brand new object that's on our camera, has our label, entered the zone, is not a false positive,
|
|
# and is not initially motionless - or one we're already tracking, which assumes all those things are already true
|
|
if (
|
|
# new object
|
|
self.tracked_object[camera] is None
|
|
and obj.camera == camera
|
|
and obj.obj_data["label"] in self.object_types[camera]
|
|
and set(obj.entered_zones) & set(self.required_zones[camera])
|
|
and not obj.previous["false_positive"]
|
|
and not obj.false_positive
|
|
and self.tracked_object_previous[camera] is None
|
|
and obj.obj_data["motionless_count"] == 0
|
|
):
|
|
logger.debug(
|
|
f"Autotrack: New object: {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
|
|
)
|
|
self.tracked_object[camera] = obj
|
|
self.tracked_object_previous[camera] = copy.deepcopy(obj)
|
|
self.previous_frame_time[camera] = obj.obj_data["frame_time"]
|
|
self._autotrack_move_ptz(camera, obj)
|
|
|
|
return
|
|
|
|
if (
|
|
# already tracking an object
|
|
self.tracked_object[camera] is not None
|
|
and self.tracked_object_previous[camera] is not None
|
|
and obj.obj_data["id"] == self.tracked_object[camera].obj_data["id"]
|
|
and obj.obj_data["frame_time"] != self.previous_frame_time
|
|
):
|
|
self.previous_frame_time[camera] = obj.obj_data["frame_time"]
|
|
# Don't move ptz if Euclidean distance from object to center of frame is
|
|
# less than 15% of the of the larger dimension (width or height) of the frame,
|
|
# multiplied by a scaling factor for object size.
|
|
# Adjusting this percentage slightly lower will effectively cause the camera to move
|
|
# more often to keep the object in the center. Raising the percentage will cause less
|
|
# movement and will be more flexible with objects not quite being centered.
|
|
# TODO: there's probably a better way to approach this
|
|
distance = np.linalg.norm(
|
|
[
|
|
obj.obj_data["centroid"][0] - camera_config.detect.width / 2,
|
|
obj.obj_data["centroid"][1] - camera_config.detect.height / 2,
|
|
]
|
|
)
|
|
|
|
obj_width = obj.obj_data["box"][2] - obj.obj_data["box"][0]
|
|
obj_height = obj.obj_data["box"][3] - obj.obj_data["box"][1]
|
|
|
|
max_obj = max(obj_width, obj_height)
|
|
max_frame = max(camera_config.detect.width, camera_config.detect.height)
|
|
|
|
# larger objects should lower the threshold, smaller objects should raise it
|
|
scaling_factor = 1 - (max_obj / max_frame)
|
|
|
|
distance_threshold = 0.15 * (max_frame) * scaling_factor
|
|
|
|
iou = intersection_over_union(
|
|
self.tracked_object_previous[camera].obj_data["box"],
|
|
obj.obj_data["box"],
|
|
)
|
|
|
|
logger.debug(
|
|
f"Distance: {distance}, threshold: {distance_threshold}, iou: {iou}"
|
|
)
|
|
|
|
if distance < distance_threshold and iou > 0.2:
|
|
logger.debug(
|
|
f"Autotrack: Existing object (do NOT move ptz): {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
|
|
)
|
|
|
|
# no need to move, but try absolute zooming
|
|
self._autotrack_zoom_only(camera, obj)
|
|
|
|
return
|
|
|
|
logger.debug(
|
|
f"Autotrack: Existing object (need to move ptz): {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
|
|
)
|
|
self.tracked_object_previous[camera] = copy.deepcopy(obj)
|
|
self._autotrack_move_ptz(camera, obj)
|
|
|
|
# try absolute zooming too
|
|
self._autotrack_zoom_only(camera, obj)
|
|
|
|
return
|
|
|
|
if (
|
|
# The tracker lost an object, so let's check the previous object's region and compare it with the incoming object
|
|
# If it's within bounds, start tracking that object.
|
|
# Should we check region (maybe too broad) or expand the previous object's box a bit and check that?
|
|
self.tracked_object[camera] is None
|
|
and obj.camera == camera
|
|
and obj.obj_data["label"] in self.object_types[camera]
|
|
and not obj.previous["false_positive"]
|
|
and not obj.false_positive
|
|
and self.tracked_object_previous[camera] is not None
|
|
):
|
|
self.previous_frame_time[camera] = obj.obj_data["frame_time"]
|
|
if (
|
|
intersection_over_union(
|
|
self.tracked_object_previous[camera].obj_data["region"],
|
|
obj.obj_data["box"],
|
|
)
|
|
< 0.2
|
|
):
|
|
logger.debug(
|
|
f"Autotrack: Reacquired object: {obj.obj_data['id']} {obj.obj_data['box']} {obj.obj_data['frame_time']}"
|
|
)
|
|
self.tracked_object[camera] = obj
|
|
self.tracked_object_previous[camera] = copy.deepcopy(obj)
|
|
self._autotrack_move_ptz(camera, obj)
|
|
|
|
return
|
|
|
|
def end_object(self, camera, obj):
|
|
if self.config.cameras[camera].onvif.autotracking.enabled:
|
|
if (
|
|
self.tracked_object[camera] is not None
|
|
and obj.obj_data["id"] == self.tracked_object[camera].obj_data["id"]
|
|
):
|
|
logger.debug(
|
|
f"Autotrack: End object: {obj.obj_data['id']} {obj.obj_data['box']}"
|
|
)
|
|
self.tracked_object[camera] = None
|
|
|
|
def camera_maintenance(self, camera):
|
|
# bail and don't check anything if we're calibrating or tracking an object
|
|
if self.calibrating[camera] or self.tracked_object[camera] is not None:
|
|
return
|
|
|
|
logger.debug("Running camera maintenance")
|
|
|
|
# calls get_camera_status to check/update ptz movement
|
|
# returns camera to preset after timeout when tracking is over
|
|
autotracker_config = self.config.cameras[camera].onvif.autotracking
|
|
|
|
if not self.autotracker_init[camera]:
|
|
self._autotracker_setup(self.config.cameras[camera], camera)
|
|
# regularly update camera status
|
|
if not self.ptz_metrics[camera]["ptz_stopped"].is_set():
|
|
self.onvif.get_camera_status(camera)
|
|
|
|
# return to preset if tracking is over
|
|
if (
|
|
self.tracked_object[camera] is None
|
|
and self.tracked_object_previous[camera] is not None
|
|
and (
|
|
# might want to use a different timestamp here?
|
|
self.ptz_metrics[camera]["ptz_frame_time"].value
|
|
- self.tracked_object_previous[camera].obj_data["frame_time"]
|
|
> autotracker_config.timeout
|
|
)
|
|
and autotracker_config.return_preset
|
|
):
|
|
# empty move queue
|
|
while not self.move_queues[camera].empty():
|
|
self.move_queues[camera].get()
|
|
|
|
# clear tracked object
|
|
self.tracked_object[camera] = None
|
|
self.tracked_object_previous[camera] = None
|
|
|
|
self.ptz_metrics[camera]["ptz_stopped"].wait()
|
|
logger.debug(
|
|
f"Autotrack: Time is {self.ptz_metrics[camera]['ptz_frame_time'].value}, returning to preset: {autotracker_config.return_preset}"
|
|
)
|
|
self.onvif._move_to_preset(
|
|
camera,
|
|
autotracker_config.return_preset.lower(),
|
|
)
|
|
self.ptz_metrics[camera]["ptz_reset"].set()
|