blakeblackshear.frigate/frigate/config/classification.py
Josh Hawkins d0e9bcbfdc
Add ability to use Jina CLIP V2 for semantic search (#16826)
* add wheels

* move extra index url to bottom

* config model option

* add postprocess

* fix config

* jina v2 embedding class

* use jina v2 in embeddings

* fix ov inference

* frontend

* update reference config

* revert device

* fix truncation

* return np tensors

* use correct embeddings from inference

* manual preprocess

* clean up

* docs

* lower batch size for v2 only

* docs clarity

* wording
2025-02-26 07:58:25 -07:00

106 lines
3.3 KiB
Python

from enum import Enum
from typing import Dict, List, Optional
from pydantic import Field
from .base import FrigateBaseModel
__all__ = [
"FaceRecognitionConfig",
"SemanticSearchConfig",
"LicensePlateRecognitionConfig",
]
class SemanticSearchModelEnum(str, Enum):
jinav1 = "jinav1"
jinav2 = "jinav2"
class BirdClassificationConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable bird classification.")
threshold: float = Field(
default=0.9,
title="Minimum classification score required to be considered a match.",
gt=0.0,
le=1.0,
)
class ClassificationConfig(FrigateBaseModel):
bird: BirdClassificationConfig = Field(
default_factory=BirdClassificationConfig, title="Bird classification config."
)
class SemanticSearchConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable semantic search.")
reindex: Optional[bool] = Field(
default=False, title="Reindex all tracked objects on startup."
)
model: Optional[SemanticSearchModelEnum] = Field(
default=SemanticSearchModelEnum.jinav1,
title="The CLIP model to use for semantic search.",
)
model_size: str = Field(
default="small", title="The size of the embeddings model used."
)
class FaceRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable face recognition.")
min_score: float = Field(
title="Minimum face distance score required to save the attempt.",
default=0.8,
gt=0.0,
le=1.0,
)
threshold: float = Field(
default=0.9,
title="Minimum face distance score required to be considered a match.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=500, title="Min area of face box to consider running face recognition."
)
save_attempts: bool = Field(
default=True, title="Save images of face detections for training."
)
class LicensePlateRecognitionConfig(FrigateBaseModel):
enabled: bool = Field(default=False, title="Enable license plate recognition.")
detection_threshold: float = Field(
default=0.7,
title="License plate object confidence score required to begin running recognition.",
gt=0.0,
le=1.0,
)
min_area: int = Field(
default=1000,
title="Minimum area of license plate to begin running recognition.",
)
recognition_threshold: float = Field(
default=0.9,
title="Recognition confidence score required to add the plate to the object as a sub label.",
gt=0.0,
le=1.0,
)
min_plate_length: int = Field(
default=4,
title="Minimum number of characters a license plate must have to be added to the object as a sub label.",
)
format: Optional[str] = Field(
default=None,
title="Regular expression for the expected format of license plate.",
)
match_distance: int = Field(
default=1,
title="Allow this number of missing/incorrect characters to still cause a detected plate to match a known plate.",
ge=0,
)
known_plates: Optional[Dict[str, List[str]]] = Field(
default={}, title="Known plates to track (strings or regular expressions)."
)