mirror of
https://github.com/blakeblackshear/frigate.git
synced 2024-11-21 19:07:46 +01:00
242 lines
9.4 KiB
Python
242 lines
9.4 KiB
Python
import os
|
|
import cv2
|
|
import imutils
|
|
import time
|
|
import datetime
|
|
import ctypes
|
|
import logging
|
|
import multiprocessing as mp
|
|
import threading
|
|
import json
|
|
from contextlib import closing
|
|
import numpy as np
|
|
from object_detection.utils import visualization_utils as vis_util
|
|
from flask import Flask, Response, make_response, send_file
|
|
import paho.mqtt.client as mqtt
|
|
|
|
from frigate.util import tonumpyarray
|
|
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
|
|
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
|
|
from frigate.motion import detect_motion
|
|
from frigate.video import fetch_frames, FrameTracker
|
|
from frigate.object_detection import detect_objects
|
|
|
|
RTSP_URL = os.getenv('RTSP_URL')
|
|
|
|
MQTT_HOST = os.getenv('MQTT_HOST')
|
|
MQTT_TOPIC_PREFIX = os.getenv('MQTT_TOPIC_PREFIX')
|
|
|
|
# REGIONS = "350,0,300,50:400,350,250,50:400,750,250,50"
|
|
# REGIONS = "400,350,250,50"
|
|
REGIONS = os.getenv('REGIONS')
|
|
|
|
DEBUG = (os.getenv('DEBUG') == '1')
|
|
|
|
def main():
|
|
DETECTED_OBJECTS = []
|
|
recent_motion_frames = {}
|
|
# Parse selected regions
|
|
regions = []
|
|
for region_string in REGIONS.split(':'):
|
|
region_parts = region_string.split(',')
|
|
region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
|
|
region_mask = np.where(region_mask_image==[0])
|
|
regions.append({
|
|
'size': int(region_parts[0]),
|
|
'x_offset': int(region_parts[1]),
|
|
'y_offset': int(region_parts[2]),
|
|
'min_person_area': int(region_parts[3]),
|
|
'min_object_size': int(region_parts[4]),
|
|
'mask': region_mask,
|
|
# Event for motion detection signaling
|
|
'motion_detected': mp.Event(),
|
|
# create shared array for storing 10 detected objects
|
|
# note: this must be a double even though the value you are storing
|
|
# is a float. otherwise it stops updating the value in shared
|
|
# memory. probably something to do with the size of the memory block
|
|
'output_array': mp.Array(ctypes.c_double, 6*10)
|
|
})
|
|
# capture a single frame and check the frame shape so the correct array
|
|
# size can be allocated in memory
|
|
video = cv2.VideoCapture(RTSP_URL)
|
|
ret, frame = video.read()
|
|
if ret:
|
|
frame_shape = frame.shape
|
|
else:
|
|
print("Unable to capture video stream")
|
|
exit(1)
|
|
video.release()
|
|
|
|
# compute the flattened array length from the array shape
|
|
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
|
# create shared array for storing the full frame image data
|
|
shared_arr = mp.Array(ctypes.c_uint16, flat_array_length)
|
|
# create shared value for storing the frame_time
|
|
shared_frame_time = mp.Value('d', 0.0)
|
|
# Lock to control access to the frame
|
|
frame_lock = mp.Lock()
|
|
# Condition for notifying that a new frame is ready
|
|
frame_ready = mp.Condition()
|
|
# Condition for notifying that motion status changed globally
|
|
motion_changed = mp.Condition()
|
|
# Condition for notifying that objects were parsed
|
|
objects_parsed = mp.Condition()
|
|
# Queue for detected objects
|
|
object_queue = mp.Queue()
|
|
|
|
# shape current frame so it can be treated as an image
|
|
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
|
|
|
# start the process to capture frames from the RTSP stream and store in a shared array
|
|
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
|
|
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
|
|
capture_process.daemon = True
|
|
|
|
# for each region, start a separate process for motion detection and object detection
|
|
detection_processes = []
|
|
motion_processes = []
|
|
for region in regions:
|
|
detection_process = mp.Process(target=detect_objects, args=(shared_arr,
|
|
object_queue,
|
|
shared_frame_time,
|
|
frame_lock, frame_ready,
|
|
region['motion_detected'],
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
region['min_person_area'],
|
|
DEBUG))
|
|
detection_process.daemon = True
|
|
detection_processes.append(detection_process)
|
|
|
|
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
|
|
shared_frame_time,
|
|
frame_lock, frame_ready,
|
|
region['motion_detected'],
|
|
motion_changed,
|
|
frame_shape,
|
|
region['size'], region['x_offset'], region['y_offset'],
|
|
region['min_object_size'], region['mask'],
|
|
DEBUG))
|
|
motion_process.daemon = True
|
|
motion_processes.append(motion_process)
|
|
|
|
# start a thread to store recent motion frames for processing
|
|
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
|
|
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
|
|
frame_tracker.start()
|
|
|
|
# start a thread to store the highest scoring recent person frame
|
|
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
|
|
motion_changed, [region['motion_detected'] for region in regions])
|
|
best_person_frame.start()
|
|
|
|
# start a thread to parse objects from the queue
|
|
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
|
|
object_parser.start()
|
|
# start a thread to expire objects from the detected objects list
|
|
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
|
|
object_cleaner.start()
|
|
|
|
# connect to mqtt and setup last will
|
|
def on_connect(client, userdata, flags, rc):
|
|
print("On connect called")
|
|
# publish a message to signal that the service is running
|
|
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
|
client = mqtt.Client()
|
|
client.on_connect = on_connect
|
|
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
|
client.connect(MQTT_HOST, 1883, 60)
|
|
client.loop_start()
|
|
|
|
# start a thread to publish object scores (currently only person)
|
|
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
|
|
mqtt_publisher.start()
|
|
|
|
# start thread to publish motion status
|
|
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
|
|
[region['motion_detected'] for region in regions])
|
|
mqtt_motion_publisher.start()
|
|
|
|
# start the process of capturing frames
|
|
capture_process.start()
|
|
print("capture_process pid ", capture_process.pid)
|
|
|
|
# start the object detection processes
|
|
for detection_process in detection_processes:
|
|
detection_process.start()
|
|
print("detection_process pid ", detection_process.pid)
|
|
|
|
# start the motion detection processes
|
|
for motion_process in motion_processes:
|
|
motion_process.start()
|
|
print("motion_process pid ", motion_process.pid)
|
|
|
|
# create a flask app that encodes frames a mjpeg on demand
|
|
app = Flask(__name__)
|
|
|
|
@app.route('/best_person.jpg')
|
|
def best_person():
|
|
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
response = make_response(jpg.tobytes())
|
|
response.headers['Content-Type'] = 'image/jpg'
|
|
return response
|
|
|
|
@app.route('/')
|
|
def index():
|
|
# return a multipart response
|
|
return Response(imagestream(),
|
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
|
def imagestream():
|
|
while True:
|
|
# max out at 5 FPS
|
|
time.sleep(0.2)
|
|
# make a copy of the current detected objects
|
|
detected_objects = DETECTED_OBJECTS.copy()
|
|
# lock and make a copy of the current frame
|
|
with frame_lock:
|
|
frame = frame_arr.copy()
|
|
# convert to RGB for drawing
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
|
# draw the bounding boxes on the screen
|
|
for obj in detected_objects:
|
|
vis_util.draw_bounding_box_on_image_array(frame,
|
|
obj['ymin'],
|
|
obj['xmin'],
|
|
obj['ymax'],
|
|
obj['xmax'],
|
|
color='red',
|
|
thickness=2,
|
|
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
use_normalized_coordinates=False)
|
|
|
|
for region in regions:
|
|
color = (255,255,255)
|
|
if region['motion_detected'].is_set():
|
|
color = (0,255,0)
|
|
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
|
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
color, 2)
|
|
|
|
# convert back to BGR
|
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
# encode the image into a jpg
|
|
ret, jpg = cv2.imencode('.jpg', frame)
|
|
yield (b'--frame\r\n'
|
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
|
|
|
app.run(host='0.0.0.0', debug=False)
|
|
|
|
capture_process.join()
|
|
for detection_process in detection_processes:
|
|
detection_process.join()
|
|
for motion_process in motion_processes:
|
|
motion_process.join()
|
|
frame_tracker.join()
|
|
best_person_frame.join()
|
|
object_parser.join()
|
|
object_cleaner.join()
|
|
mqtt_publisher.join()
|
|
|
|
if __name__ == '__main__':
|
|
main() |