mirror of
https://github.com/blakeblackshear/frigate.git
synced 2026-02-04 20:09:12 +01:00
* Rename existing function * Keep track of thumbnial updates * Tinkering with genai prompt * Adjust input format * Create model for review description output * testing prompt changes * Prompt improvements and image saving * Add config for review items genai * Use genai review config * Actual config usage * Adjust debug image saving * Fix * Fix review creation * Adjust prompt * Prompt adjustment * Run genai in thread * Fix detections block * Adjust prompt * Prompt changes * Save genai response to metadata model * Handle metadata * Send review update to dispatcher * Save review metadata to DB * Send review notification updates * Quick fix * Fix name * Fix update type * Correctly dump model * Add card * Add card * Remove message * Cleanup typing and UI * Adjust prompt * Formatting * Add log * Formatting * Add inference speed and keep alive
163 lines
5.2 KiB
Python
163 lines
5.2 KiB
Python
"""Post processor for review items to get descriptions."""
|
|
|
|
import copy
|
|
import datetime
|
|
import logging
|
|
import os
|
|
import shutil
|
|
import threading
|
|
from pathlib import Path
|
|
|
|
import cv2
|
|
|
|
from frigate.comms.inter_process import InterProcessRequestor
|
|
from frigate.config import FrigateConfig
|
|
from frigate.const import CLIPS_DIR, UPDATE_REVIEW_DESCRIPTION
|
|
from frigate.data_processing.types import PostProcessDataEnum
|
|
from frigate.genai import GenAIClient
|
|
from frigate.util.builtin import EventsPerSecond, InferenceSpeed
|
|
|
|
from ..post.api import PostProcessorApi
|
|
from ..types import DataProcessorMetrics
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ReviewDescriptionProcessor(PostProcessorApi):
|
|
def __init__(
|
|
self,
|
|
config: FrigateConfig,
|
|
requestor: InterProcessRequestor,
|
|
metrics: DataProcessorMetrics,
|
|
client: GenAIClient,
|
|
):
|
|
super().__init__(config, metrics, None)
|
|
self.requestor = requestor
|
|
self.metrics = metrics
|
|
self.tracked_review_items: dict[str, list[tuple[int, bytes]]] = {}
|
|
self.genai_client = client
|
|
self.review_desc_speed = InferenceSpeed(self.metrics.review_desc_speed)
|
|
self.review_descs_dps = EventsPerSecond()
|
|
self.review_descs_dps.start()
|
|
|
|
def process_data(self, data, data_type):
|
|
self.metrics.review_desc_dps.value = self.review_descs_dps.eps()
|
|
|
|
if data_type != PostProcessDataEnum.review:
|
|
return
|
|
|
|
id = data["after"]["id"]
|
|
|
|
if data["type"] == "new" or data["type"] == "update":
|
|
if id not in self.tracked_review_items:
|
|
self.tracked_review_items[id] = []
|
|
|
|
thumb_time = data["after"]["data"]["thumb_time"]
|
|
thumb_path = data["after"]["thumb_path"]
|
|
|
|
if thumb_time and thumb_path:
|
|
if (
|
|
len(self.tracked_review_items[id]) > 0
|
|
and self.tracked_review_items[id][0] == thumb_time
|
|
):
|
|
# we have already processed this thumbnail
|
|
return
|
|
|
|
thumb_data = cv2.imread(thumb_path)
|
|
ret, jpg = cv2.imencode(
|
|
".jpg", thumb_data, [int(cv2.IMWRITE_JPEG_QUALITY), 100]
|
|
)
|
|
|
|
if ret:
|
|
self.tracked_review_items[id].append((thumb_time, jpg.tobytes()))
|
|
|
|
if self.config.cameras[
|
|
data["after"]["camera"]
|
|
].review.genai.debug_save_thumbnails:
|
|
id = data["after"]["id"]
|
|
Path(os.path.join(CLIPS_DIR, f"genai-requests/{id}")).mkdir(
|
|
parents=True, exist_ok=True
|
|
)
|
|
shutil.copy(
|
|
thumb_path,
|
|
os.path.join(
|
|
CLIPS_DIR,
|
|
f"genai-requests/{id}/{thumb_time}.webp",
|
|
),
|
|
)
|
|
|
|
else:
|
|
if id not in self.tracked_review_items:
|
|
return
|
|
|
|
final_data = data["after"]
|
|
camera = final_data["camera"]
|
|
|
|
if (
|
|
final_data["severity"] == "alert"
|
|
and not self.config.cameras[camera].review.genai.alerts
|
|
):
|
|
self.tracked_review_items.pop(id)
|
|
return
|
|
elif (
|
|
final_data["severity"] == "detection"
|
|
and not self.config.cameras[camera].review.genai.detections
|
|
):
|
|
self.tracked_review_items.pop(id)
|
|
return
|
|
|
|
# kickoff analysis
|
|
self.review_descs_dps.update()
|
|
threading.Thread(
|
|
target=run_analysis,
|
|
args=(
|
|
self.requestor,
|
|
self.genai_client,
|
|
self.review_desc_speed,
|
|
camera,
|
|
final_data,
|
|
copy.copy([r[1] for r in self.tracked_review_items[id]]),
|
|
),
|
|
).start()
|
|
self.tracked_review_items.pop(id)
|
|
|
|
def handle_request(self, request_data):
|
|
pass
|
|
|
|
|
|
@staticmethod
|
|
def run_analysis(
|
|
requestor: InterProcessRequestor,
|
|
genai_client: GenAIClient,
|
|
review_inference_speed: InferenceSpeed,
|
|
camera: str,
|
|
final_data: dict[str, str],
|
|
thumbs: list[bytes],
|
|
) -> None:
|
|
start = datetime.datetime.now().timestamp()
|
|
metadata = genai_client.generate_review_description(
|
|
{
|
|
"camera": camera,
|
|
"objects": final_data["data"]["objects"],
|
|
"recognized_objects": final_data["data"]["sub_labels"],
|
|
"zones": final_data["data"]["zones"],
|
|
"timestamp": datetime.datetime.fromtimestamp(final_data["end_time"]),
|
|
},
|
|
thumbs,
|
|
)
|
|
review_inference_speed.update(datetime.datetime.now().timestamp() - start)
|
|
|
|
if not metadata:
|
|
return None
|
|
|
|
prev_data = copy.deepcopy(final_data)
|
|
final_data["data"]["metadata"] = metadata.model_dump()
|
|
requestor.send_data(
|
|
UPDATE_REVIEW_DESCRIPTION,
|
|
{
|
|
"type": "genai",
|
|
"before": {k: v for k, v in prev_data.items()},
|
|
"after": {k: v for k, v in final_data.items()},
|
|
},
|
|
)
|